ترغب بنشر مسار تعليمي؟ اضغط هنا

Four annular structures in a protostellar disk less than 500,000 years old

253   0   0.0 ( 0 )
 نشر من قبل Dominique Segura-Cox
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Annular structures, or rings and gaps, in disks around pre-main sequence stars have been detected in abundance towards Class II objects ~1,000,000 years in age. These structures are often interpreted as evidence of planet formation, with planet-mass bodies carving rings and gaps in the disk. This implies that planet formation may already be underway in even younger disks in the Class I phase, when the protostar is still embedded in a larger scale dense envelope of gas and dust. While younger disks likely play an important role in the onset of planet formation, only within the past decade have detailed properties of disks in the youngest star-forming phases begun to be observed. Here we present 1.3 mm dust emission observations with 5 au resolution that show four annular substructures in the disk of the young (<500,000 years) protostar IRS 63. IRS 63, a single Class I source located in the nearby Ophiuchus molecular cloud (at a distance of 144 pc), is one of the brightest Class I protostars at (sub)millimeter wavelengths that also has a relatively large disk (>50 au). Multiple annular substructures observed towards disks at young times can act as an early foothold for dust grain growth, a prerequisite of planet formation. Whether planets already exist or not in the disk of IRS 63, it is clear that the planet formation process begins in the young protostellar phases, earlier than predicted by current planet formation theories.



قيم البحث

اقرأ أيضاً

The disk mass is among the most important input parameter for every planet formation model to determine the number and masses of the planets that can form. We present an ALMA 887micron survey of the disk population around objects from 2 to 0.03Msun i n the nearby 2Myr-old Chamaeleon I star-forming region. We detect thermal dust emission from 66 out of 93 disks, spatially resolve 34 of them, and identify two disks with large dust cavities of about 45AU in radius. Assuming isothermal and optically thin emission, we convert the 887micron flux densities into dust disk masses, hereafter Mdust. We find that the Mdust-Mstar relation is steeper than linear with power law indices 1.3-1.9, where the range reflects two extremes of the possible relation between the average dust temperature and stellar luminosity. By re-analyzing all millimeter data available for nearby regions in a self-consistent way, we show that the 1-3 Myr-old regions of Taurus, Lupus, and Chamaeleon I share the same Mdust-Mstar relation, while the 10Myr-old Upper Sco association has a steeper relation. Theoretical models of grain growth, drift, and fragmentation reproduce this trend and suggest that disks are in the fragmentation-limited regime. In this regime millimeter grains will be located closer in around lower-mass stars, a prediction that can be tested with deeper and higher spatial resolution ALMA observations.
85 - David E. Trilling 2016
Data from the New Horizons mission to Pluto show no craters on Sputnik Planum down to the detection limit (2 km for low resolution data, 625 m for high resolution data). The number of small Kuiper Belt Objects that should be impacting Pluto is known to some degree from various astronomical surveys. We combine these geological and telescopic observations to make an order of magnitude estimate that the surface age of Sputnik Planum must be less than 10 million years. This maximum surface age is surprisingly young and implies that this area of Pluto must be undergoing active resurfacing, presumably through some cryo-geophysical process. We discuss three possible resurfacing mechanisms and the implications of each one for Plutos physical properties.
Observations of protoplanetary disks around very low-mass stars and brown dwarfs remain challenging and little is known about their properties. The disk around CIDA1 ($sim$0.1-0.2$M_odot$) is one of the very few known disks that host a large cavity ( 20au radius in size) around a very low-mass star. We present new ALMA observations at Band7 (0.9mm) and Band4 (2.1mm) of CIDA1 with a resolution of $sim 0.05times 0.034$. These new ALMA observations reveal a very bright and unresolved inner disk, a shallow spectral index of the dust emission ($sim2$), and a complex morphology of a ring located at 20au. We also present X-Shooter (VLT) observations that confirm the high accretion rate of CIDA1 of $dot{M}_{rm acc}$=1.4 $times~10^{-8}M_odot$/yr. This high value of $dot{M}_{rm acc}$, the observed inner disk, and the large cavity of 20au exclude models of photo-evaporation to explain the observed cavity. When comparing these observations with models that combine planet-disk interaction, dust evolution, and radiative transfer, we exclude planets more massive than 0.5$M_{rm{Jup}}$ as the potential origin of the large cavity because with these it is difficult to maintain a long-lived and bright inner disk. Even in this planet mass regime, an additional physical process may be needed to stop the particles from migrating inwards and to maintain a bright inner disk on timescales of millions of years. Such mechanisms include a trap formed by a very close-in extra planet or the inner edge of a dead zone. The low spectral index of the disk around CIDA1 is difficult to explain and challenges our current dust evolution models, in particular processes like fragmentation, growth, and diffusion of particles inside pressure bumps.
We report the discovery of four transiting extrasolar planets (HAT-P-34b - HAT-P-37b) with masses ranging from 1.05 to 3.33 MJ and periods from 1.33 to 5.45 days. These planets orbit relatively bright F and G dwarf stars (from V = 10.16 to V = 13.2). Of particular interest is HAT-P-34b which is moderately massive (3.33 MJ), has a high eccentricity of e = 0.441 +/- 0.032 at P = 5.4526540+/-0.000016 d period, and shows hints of an outer component. The other three planets have properties that are typical of hot Jupiters.
128 - S. Facchini , M. Benisty , J. Bae 2020
We present high resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and J1610. These disks host dust-depleted inner regions, possibly carved by massive planets, and are of prime interest to study the imprin ts of planet-disk interactions. While at moderate angular resolution they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60$times$40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~$7,mu$Jy beam$^{-1}$ rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host 3 and 2 narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We perform hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note however that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals and possibly second generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few $M_{rm Jup}$), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms being at the origin of the observed substructures, in particular with narrow rings generated at the edge of the CO and N$_2$ snowlines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا