ترغب بنشر مسار تعليمي؟ اضغط هنا

Stabilization of Magnetic Skyrmions on Arrays of Self-Assembled Hexagonal Nanodomes for Magnetic Recording Applications

100   0   0.0 ( 0 )
 نشر من قبل Juliano Denardin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic skyrmions are nontrivial spin textures which resist external perturbations, being promising candidates for the next generation recording devices. Nevertheless, a major challenge in realizing skyrmion-based devices is the stabilization of ordered arrays of these spin textures under ambient conditions and zero applied field. Here, we demonstrate for the first time the formation and stabilization of magnetic skyrmions on arrays of self-assembled hexagonal nanodomes taking advantage of the intrinsic properties of its curved geometry. Magnetic force microscopy images from the arrays of 100 nm nanodomes showed stable skyrmions at zero field that are arranged following the topography of the nanostructure. Micromagnetic simulations are compared to the experiments to determine the correlation of the domain textures with the topography of the samples. We propose a simple method to nucleate and annihilate skyrmions, opening the possibility for ultra-dense data storage based on the high stability and low energy consumption of the skyrmionic textures.



قيم البحث

اقرأ أيضاً

We report about a combined structural and magnetometric characterization of self-assembled magnetic nanoparticle arrays. Monodisperse iron oxide nanoparticles with a diameter of 20 nm were synthesized by thermal decomposition. The nanoparticle suspen sion was spin-coated on Si substrates to achieve self-organized arrays of particles and subsequently annealed at various conditions. The samples were characterized by x-ray diffraction, bright and dark field high resolution transmission electron microscopy (HRTEM). The structural analysis is compared to the magnetic behavior investigated by superconducting interference device (SQUID) magnetometry. We can identify either multi-phase FeO/g-Fe2O3 or multi-phase FeO/Fe3O4 nanoparticles. The FeO/g-Fe2O3 system shows a pronounced exchange bias effect which explains the peculiar magnetization data obtained for this system.
We study the stabilization of an isolated magnetic skyrmion in a magnetic monolayer on a nonmagnetic conducting substrate via the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. Two different types of the substrate are considered, usual no rmal metal and single-layer graphene. While the full stability analysis for skyrmions in the presence of the RKKY coupling requires a separate effort that is outside the scope of this work, we are able to study the radial stability (stability of a skyrmion against collapse) using variational energy estimates obtained within first-order perturbation theory, with the unperturbed Hamiltonian describing the isotropic Heisenberg magnet, and the two perturbations being the RKKY exchange and the easy-axis anisotropy. We show that a proper treatment of the long-range nature of the RKKY interaction leads to a qualitatively different stabilization scenario compared to previous studies, where solitons were stabilized by the frustrated exchange coupling (leading to terms with the fourth power of the magnetization gradients) or by the Dzyaloshinskii-Moriya interaction (described by terms linear in the magnetization gradients). In the case of a metallic substrate, the skyrmion stabilization is possible under restrictive conditions on the Fermi surface parameters, while in the case of a graphene substrate the stabilization is naturally achieved in several geometries with a lattice-matching of graphene and magnetic layer.
We present a scanning magnetic force sensor based on an individual magnet-tipped GaAs nanowire (NW) grown by molecular beam epitaxy. Its magnetic tip consists of a final segment of single-crystal MnAs formed by sequential crystallization of the liqui d Ga catalyst droplet. We characterize the mechanical and magnetic properties of such NWs by measuring their flexural mechanical response in an applied magnetic field. Comparison with numerical simulations allows the identification of their equilibrium magnetization configurations, which in some cases include magnetic vortices. To determine a NWs performance as a magnetic scanning probe, we measure its response to the field profile of a lithographically patterned current-carrying wire. The NWs tiny tips and their high force sensitivity make them promising for imaging weak magnetic field patterns on the nanometer-scale, as required for mapping mesoscopic transport and spin textures or in nanometer-scale magnetic resonance.
Magnetic skyrmions in chiral-lattice ferromagnets are currently attracting enormous research interest because of their potential applications in spintronic devices. However, they emerge in bulk specimens only in a narrow window of temperature and mag netic field. This limited stability regime is recognized as an obstacle to technical applications. Recent experiments demonstrated that the thermodynamic stability of magnetic skyrmions is enhanced or suppressed by the application of a uniaxial strain depending on its axial direction in bulk chiral-lattice ferromagnets MnSi [Y. Nii et al., Nat. Commun. 6, 8539 (2015), A. Chacon et al., Phys. Rev. Lett. 115, 267202 (2015)] and Cu2OSeO3 [S. Seki et al., Phys. Rev. B 96, 220404(R) (2017)]. Motivated by these experimental discoveries, we theoretically investigated the effects of anisotropic Dzyaloshinskii--Moriya interactions on the stability of magnetic skyrmions caused by this uniaxial strain. We find that magnetic skyrmions are significantly stabilized (destabilized) in the presence of anisotropic DM interactions when an external magnetic field lies perpendicular (parallel) to the anisotropy axis, along which the DM coupling is strengthened. Our results account completely for the experimentally observed strain-induced stabilization and destabilization of magnetic skyrmions and provide a firm ground for possible strain engineering of skyrmion-based electronic devices.
82 - Sai Li , Wang Kang , Xichao Zhang 2020
Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendo us attention has been focused on the continuous scaling of Moores Law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been raised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا