ﻻ يوجد ملخص باللغة العربية
We establish a one-to-one mapping between entanglement entropy, energy, and temperature (quantum entanglement mechanics) with black hole entropy, Komar energy, and Hawking temperature, respectively. We show this explicitly for 4-D spherically symmetric asymptotically flat and non-flat space-times with single and multiple horizons. We exploit an inherent scaling symmetry of entanglement entropy and identify scaling transformations that generate an infinite number of systems with the same entanglement entropy, distinguished only by their respective energies and temperatures. We show that this scaling symmetry is present in most well-known systems starting from the two-coupled harmonic oscillator to quantum scalar fields in spherically symmetric space-time. The scaling symmetry allows us to identify the cause of divergence of entanglement entropy to the generation of (near) zero-modes in the systems. We systematically isolate the zero-mode contributions using suitable boundary conditions. We show that the entanglement entropy and energy of quantum scalar field scale differently in space-times with horizons and flat space-time. The relation $E=2TS$, in analogy with the horizons thermodynamic structure, is also found to be universally satisfied in the entanglement picture. We then show that there exists a one-to-one correspondence leading to the Smarr-formula of black hole thermodynamics for asymptotically flat and non-flat space-times.
A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum
We consider the equivalence of quasinormal modes and geodesic quantities recently brought back due to the black hole shadow observation by Event Horizon Telescope. Using WKB method we found an analytical relation between the real part of quasinormal
In this paper, we investigate the entanglement entropy for the generalized charged BTZ black hole through the $AdS_{3}/CFT_{2}$ correspondence. Using the holographic description of the entanglement entropy for the strip-subsystem in boundary $CFT_{2}
For the Schwarzschild black hole the Bekenstein-Hawking entropy is proportional to the area of the event horizon. For the black holes with two horizons the thermodynamics is not very clear, since the role of the inner horizons is not well established
In this work, a correspondence between black hole solutions of conformal and massive theories of gravity is found. It is seen that this correspondence imposes some constraints on parameters of these theories. What is more, a relation between the mass