ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-virial temperature or Neon overabundance?: Suzaku observations of the Milky Way circumgalactic Medium

72   0   0.0 ( 0 )
 نشر من قبل Anjali Gupta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed Suzaku and Chandra observations of the soft diffuse X-ray background toward four sightlines with the goal of characterizing the X-ray emission from the Milky Way circumgalactic medium (CGM). We identified two thermal components of the CGM, one at a uniform temperature of $rm kT = 0.176pm0.008 ~keV$ and the other at temperatures ranging between $rm kT = 0.65-0.90~ keV$. The uniform lower temperature component is consistent with the Galaxys virial temperature ($ sim10^{6}~ K$). The temperatures of the hotter components are similar to that recently discovered ($rm sim 10^{7}~ K$; Das et al.) in the sightline to blazar 1ES1553+113, passing close to the Fermi bubble. Alternatively, the spectra can be described by just one lower-temperature component with super-solar Neon abundance, once again similar to that found in the 1ES1553+113 sightline. The additional hot component or the overabundance of Ne is required at a significance of $>4sigma$, but we cannot distinguish between the two possibilities. These results show that the super-virial temperature gas or an enhanced Ne abundance in the warm-hot gas in the CGM is widespread, and these are not necessarily related to the Fermi bubble.

قيم البحث

اقرأ أيضاً

For the first time, we present the simultaneous detection and characterization of three distinct phases at $>10^5$ K in $z=0$ absorption, using deep $it{Chandra}$ observations toward Mrk 421. The extraordinarily high signal-to-noise ratio ($geqslant6 0$) of the spectra has allowed us to detect a $it{hot}$ phase of the Milky Way circumgalactic medium (CGM) at 3.2$^{+1.5}_{-0.5}times$ 10$^7$ K, coexisting with a $textit{warm-hot}$ phase at 1.5$pm$0.1$times$10$^6$ K and a $textit{warm}$ phase at 3.0$pm$0.4$times$10$^5$ K. The $textit{warm-hot}$ phase is at the virial temperature of the Galaxy, and the $textit{warm}$ phase may have cooled from the $textit{warm-hot}$ phase, but the super-virial $textit{hot}$ phase remains a mystery. We find that [C/O] in the $textit{warm}$ and $textit{warm-hot}$ phases, [Mg/O] in the $textit{warm-hot}$ phase and [Ne/O] in the $textit{hot}$ phase are super-solar, and the $textit{hot}$ and the $textit{warm-hot}$ phases are $alpha-$enhanced. Non-thermal line broadening is evident in the $textit{warm-hot}$ and the $textit{hot}$ phases and it dominates the total line broadening. Our results indicate that the $>10^5$ K CGM is a complex ecosystem. It provides insights on the thermal and chemical history of the Milky Way CGM, and theories of galaxy evolution.
Observational evidence shows that low-redshift galaxies are surrounded by extended haloes of multiphase gas, the so-called circumgalactic medium (CGM). To study the survival of relatively cool gas (T < 10^5 K) in the CGM, we performed a set of hydrod ynamical simulations of cold (T = 10^4 K) neutral gas clouds travelling through a hot (T = 2x10^6 K) and low-density (n = 10^-4 cm^-3) coronal medium, typical of Milky Way-like galaxies at large galactocentric distances (~ 50-150 kpc). We explored the effects of different initial values of relative velocity and radius of the clouds. Our simulations were performed on a two-dimensional grid with constant mesh size (2 pc) and they include radiative cooling, photoionization heating and thermal conduction. We found that for large clouds (radii larger than 250 pc) the cool gas survives for very long time (larger than 250 Myr): despite that they are partially destroyed and fragmented into smaller cloudlets during their trajectory, the total mass of cool gas decreases at very low rates. We found that thermal conduction plays a significant role: its effect is to hinder formation of hydrodynamical instabilities at the cloud-corona interface, keeping the cloud compact and therefore more difficult to destroy. The distribution of column densities extracted from our simulations are compatible with those observed for low-temperature ions (e.g. SiII and SiIII) and for high-temperature ions (OVI) once we take into account that OVI covers much more extended regions than the cool gas and, therefore, it is more likely to be detected along a generic line of sight.
The Milky Way galaxy is surrounded by a circumgalactic medium (CGM) that may play a key role in galaxy evolution as the source of gas for star formation and a repository of metals and energy produced by star formation and nuclear activity. The CGM ma y also be a repository for baryons seen in the early universe, but undetected locally. The CGM has an ionized component at temperatures near $2 times 10^{6}$~K studied primarily in the soft X-ray band. Here we report a survey of the southern Galactic sky with a soft X-ray spectrometer optimized to study diffuse soft X-ray emission. The X-ray emission is best fit with a disc-like model based on the radial profile of the surface density of molecular hydrogen, a tracer of star formation, suggesting that the X-ray emission is predominantly from hot plasma produced via stellar feedback. Strong variations in the X-ray emission on angular scales of $sim10^{circ}$ indicate that the CGM is clumpy. Addition of an extended, and possibly massive, halo component is needed to match the halo density inferred from other observations.
We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and mar ginalizes over uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk. Our results are consistent with the cold, collisionless DM paradigm and yield the strongest cosmological constraints to date on particle models of warm, interacting, and fuzzy dark matter. At $95%$ confidence, we report limits on (i) the mass of thermal relic warm DM, $m_{rm WDM} > 6.5 mathrm{keV}$ (free-streaming length, $lambda_{rm{fs}} lesssim 10,h^{-1} mathrm{kpc}$), (ii) the velocity-independent DM-proton scattering cross section, $sigma_{0} < 8.8times 10^{-29} mathrm{cm}^{2}$ for a $100 mathrm{MeV}$ DM particle mass (DM-proton coupling, $c_p lesssim (0.3 mathrm{GeV})^{-2}$), and (iii) the mass of fuzzy DM, $m_{phi}> 2.9 times 10^{-21} mathrm{eV}$ (de Broglie wavelength, $lambda_{rm{dB}} lesssim 0.5 mathrm{kpc}$). These constraints are complementary to other observational and laboratory constraints on DM properties.
We combine the Santa-Cruz Semi-Analytic Model (SAM) for galaxy formation and evolution with the circumgalactic medium (CGM) model presented in Faerman et al. (2020) to explore the CGM properties of $L^{*}$ galaxies. We use the SAM to generate a sampl e of galaxies with halo masses similar to the Milky Way (MW) halo, $M_{rm vir} approx 10^{12}~{rm M_{sun}}$, and find that the CGM mass and mean metallicity in the sample are correlated. We use the CGM masses and metallicities of the SAM galaxies as inputs for the FSM20 model, and vary the amount of non-thermal support. The density profiles in our models can be approximated by power-law functions with slopes in the range of $0.75 < a_n < 1.25$, with higher non-thermal pressure resulting in flatter distributions. We explore how the gas pressure, dispersion measure, OVI-OVIII column densities, and cooling rates behave with the gas distribution and total mass. We show that for CGM masses below $sim 3 times 10^{10}~{rm M_{sun}}$, photoionization has a significant effect on the column densities of OVI and OVIII. The combination of different MW CGM observations favors models with similar fractions in thermal pressure, magnetic fields/cosmic rays, and turbulent support, and with $M_{rm gas} sim 3-10 times 10^{10}~{rm M_{sun}}$. The MW OVI column requires $t_{rm cool}/t_{rm dyn} sim 4$, independent of the gas distribution. The AGN jet-driven heating rates in the SAM are enough to offset the CGM cooling, although exact balance is not required in star-forming galaxies. We provide predictions for the columns densities of additional metal ions - NV, NeVIII, and MgX.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا