ﻻ يوجد ملخص باللغة العربية
Constructing systems that exhibit time-scales much longer than those of the underlying components, as well as emergent dynamical and collective behavior, is a key goal in fields such as synthetic biology and materials self-assembly. Inspiration often comes from living systems, in which robust global behavior prevails despite the stochasticity of the underlying processes. Here, we present two-dimensional stochastic networks that consist of minimal motifs representing out-of-equilibrium cycles at the molecular scale and support chiral edge currents in configuration space. These currents arise in the topological phase due to the bulk-boundary correspondence and dominate the system dynamics in the steady-state, further proving robust to defects or blockages. We demonstrate the topological properties of these networks and their uniquely non-Hermitian features such as exceptional points and vorticity, while characterizing the edge state localization. As these emergent edge currents are associated to macroscopic timescales and length scales, simply tuning a small number of parameters enables varied dynamical phenomena including a global clock, dynamical growth and shrinkage, and synchronization. Our construction provides a novel topological formalism for stochastic systems and fresh insights into non-Hermitian physics, paving the way for the prediction of robust dynamical states in new classical and quantum platforms.
We discuss persistent currents for particles with internal degrees of freedom. The currents arise because of winding properties essential for the chaotic motion of the particles in a confined geometry. The currents do not change the particle concentr
Thermodynamic observables of mesoscopic systems can be expressed as integrated empirical currents. Their fluctuations are bound by thermodynamic uncertainty relations. We introduce the hyperaccurate current as the integrated empirical current with th
We study crystal melting in two-dimensional antiferromagnets, by analyzing the statistical mechanics of the six-state clock model on a lattice in which defects (dislocations and disclinations) are allowed to appear. We show that the elementary disloc
In this paper, we discuss relativistic hydrodynamics for a massless Dirac fermion in $(2+1)$ dimensions, which has the parity anomaly -- a global t Hooft anomaly between $mathrm{U}(1)$ and parity symmetries. We investigate how hydrodynamics implement
We show that the onset of quantum chaos at infinite temperature in two many-body 1D lattice models, the perturbed spin-1/2 XXZ and Anderson models, is characterized by universal behavior. Specifically, we show that the onset of quantum chaos is marke