ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Natural Language Processing with Limited Annotations: Try Few-shot Textual Entailment as a Start

145   0   0.0 ( 0 )
 نشر من قبل Wenpeng Yin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A standard way to address different NLP problems is by first constructing a problem-specific dataset, then building a model to fit this dataset. To build the ultimate artificial intelligence, we desire a single machine that can handle diverse new problems, for which task-specific annotations are limited. We bring up textual entailment as a unified solver for such NLP problems. However, current research of textual entailment has not spilled much ink on the following questions: (i) How well does a pretrained textual entailment system generalize across domains with only a handful of domain-specific examples? and (ii) When is it worth transforming an NLP task into textual entailment? We argue that the transforming is unnecessary if we can obtain rich annotations for this task. Textual entailment really matters particularly when the target NLP task has insufficient annotations. Universal NLP can be probably achieved through different routines. In this work, we introduce Universal Few-shot textual Entailment (UFO-Entail). We demonstrate that this framework enables a pretrained entailment model to work well on new entailment domains in a few-shot setting, and show its effectiveness as a unified solver for several downstream NLP tasks such as question answering and coreference resolution when the end-task annotations are limited. Code: https://github.com/salesforce/UniversalFewShotNLP



قيم البحث

اقرأ أيضاً

Large pre-trained language models (LMs) have demonstrated remarkable ability as few-shot learners. However, their success hinges largely on scaling model parameters to a degree that makes it challenging to train and serve. In this paper, we propose a new approach, named as EFL, that can turn small LMs into better few-shot learners. The key idea of this approach is to reformulate potential NLP task into an entailment one, and then fine-tune the model with as little as 8 examples. We further demonstrate our proposed method can be: (i) naturally combined with an unsupervised contrastive learning-based data augmentation method; (ii) easily extended to multilingual few-shot learning. A systematic evaluation on 18 standard NLP tasks demonstrates that this approach improves the various existing SOTA few-shot learning methods by 12%, and yields competitive few-shot performance with 500 times larger models, such as GPT-3.
92 - Wenpeng Yin 2020
Few-shot natural language processing (NLP) refers to NLP tasks that are accompanied with merely a handful of labeled examples. This is a real-world challenge that an AI system must learn to handle. Usually we rely on collecting more auxiliary informa tion or developing a more efficient learning algorithm. However, the general gradient-based optimization in high capacity models, if training from scratch, requires many parameter-updating steps over a large number of labeled examples to perform well (Snell et al., 2017). If the target task itself cannot provide more information, how about collecting more tasks equipped with rich annotations to help the model learning? The goal of meta-learning is to train a model on a variety of tasks with rich annotations, such that it can solve a new task using only a few labeled samples. The key idea is to train the models initial parameters such that the model has maximal performance on a new task after the parameters have been updated through zero or a couple of gradient steps. There are already some surveys for meta-learning, such as (Vilalta and Drissi, 2002; Vanschoren, 2018; Hospedales et al., 2020). Nevertheless, this paper focuses on NLP domain, especially few-shot applications. We try to provide clearer definitions, progress summary and some common datasets of applying meta-learning to few-shot NLP.
The recently proposed SNLI-VE corpus for recognising visual-textual entailment is a large, real-world dataset for fine-grained multimodal reasoning. However, the automatic way in which SNLI-VE has been assembled (via combining parts of two related da tasets) gives rise to a large number of errors in the labels of this corpus. In this paper, we first present a data collection effort to correct the class with the highest error rate in SNLI-VE. Secondly, we re-evaluate an existing model on the corrected corpus, which we call SNLI-VE-2.0, and provide a quantitative comparison with its performance on the non-corrected corpus. Thirdly, we introduce e-SNLI-VE, which appends human-written natural language explanations to SNLI-VE-2.0. Finally, we train models that learn from these explanations at training time, and output such explanations at testing time.
In this paper, we present a new corpus of entailment problems. This corpus combines the following characteristics: 1. it is precise (does not leave out implicit hypotheses) 2. it is based on real-world texts (i.e. most of the premises were written fo r purposes other than testing textual entailment). 3. its size is 150. The corpus was constructed by taking problems from the Real Text Entailment and discovering missing hypotheses using a crowd of experts. We believe that this corpus constitutes a first step towards wide-coverage testing of precise natural-language inference systems.
We introduce a collection of recognizing textual entailment (RTE) datasets focused on figurative language. We leverage five existing datasets annotated for a variety of figurative language -- simile, metaphor, and irony -- and frame them into over 12 ,500 RTE examples.We evaluate how well state-of-the-art models trained on popular RTE datasets capture different aspects of figurative language. Our results and analyses indicate that these models might not sufficiently capture figurative language, struggling to perform pragmatic inference and reasoning about world knowledge. Ultimately, our datasets provide a challenging testbed for evaluating RTE models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا