ﻻ يوجد ملخص باللغة العربية
A standard way to address different NLP problems is by first constructing a problem-specific dataset, then building a model to fit this dataset. To build the ultimate artificial intelligence, we desire a single machine that can handle diverse new problems, for which task-specific annotations are limited. We bring up textual entailment as a unified solver for such NLP problems. However, current research of textual entailment has not spilled much ink on the following questions: (i) How well does a pretrained textual entailment system generalize across domains with only a handful of domain-specific examples? and (ii) When is it worth transforming an NLP task into textual entailment? We argue that the transforming is unnecessary if we can obtain rich annotations for this task. Textual entailment really matters particularly when the target NLP task has insufficient annotations. Universal NLP can be probably achieved through different routines. In this work, we introduce Universal Few-shot textual Entailment (UFO-Entail). We demonstrate that this framework enables a pretrained entailment model to work well on new entailment domains in a few-shot setting, and show its effectiveness as a unified solver for several downstream NLP tasks such as question answering and coreference resolution when the end-task annotations are limited. Code: https://github.com/salesforce/UniversalFewShotNLP
Large pre-trained language models (LMs) have demonstrated remarkable ability as few-shot learners. However, their success hinges largely on scaling model parameters to a degree that makes it challenging to train and serve. In this paper, we propose a
Few-shot natural language processing (NLP) refers to NLP tasks that are accompanied with merely a handful of labeled examples. This is a real-world challenge that an AI system must learn to handle. Usually we rely on collecting more auxiliary informa
The recently proposed SNLI-VE corpus for recognising visual-textual entailment is a large, real-world dataset for fine-grained multimodal reasoning. However, the automatic way in which SNLI-VE has been assembled (via combining parts of two related da
In this paper, we present a new corpus of entailment problems. This corpus combines the following characteristics: 1. it is precise (does not leave out implicit hypotheses) 2. it is based on real-world texts (i.e. most of the premises were written fo
We introduce a collection of recognizing textual entailment (RTE) datasets focused on figurative language. We leverage five existing datasets annotated for a variety of figurative language -- simile, metaphor, and irony -- and frame them into over 12