ﻻ يوجد ملخص باللغة العربية
The accumulation of noise in quantum computers is the dominant issue stymieing the push of quantum algorithms beyond their classical counterparts. We do not expect to be able to afford the overhead required for quantum error correction in the next decade, so in the meantime we must rely on low-cost, unscalable error mitigation techniques to bring quantum computing to its full potential. This paper presents a new error mitigation technique based on quantum phase estimation that can also reduce errors in expectation value estimation (e.g., for variational algorithms). The general idea is to apply phase estimation while effectively post-selecting for the system register to be in the starting state, which allows us to catch and discard errors which knock us away from there. We refer to this technique as verified phase estimation (VPE) and show that it can be adapted to function without the use of control qubits in order to simplify the control circuitry for near-term implementations. Using VPE, we demonstrate the estimation of expectation values on numerical simulations of intermediate scale quantum circuits with multiple orders of magnitude improvement over unmitigated estimation at near-term error rates (even after accounting for the additional complexity of phase estimation). Our numerical results suggest that VPE can mitigate against any single errors that might occur; i.e., the error in the estimated expectation values often scale as O(p^2), where p is the probability of an error occurring at any point in the circuit. This property, combined with robustness to sampling noise reveal VPE as a practical technique for mitigating errors in near-term quantum experiments.
Dynamical decoupling (DD) is a widely-used quantum control technique that takes advantage of temporal symmetries in order to partially suppress quantum errors without the need resource-intensive error detection and correction protocols. This and othe
Motivated by estimation of quantum noise models, we study the problem of learning a Pauli channel, or more generally the Pauli error rates of an arbitrary channel. By employing a novel reduction to the Population Recovery problem, we give an extremel
If NISQ-era quantum computers are to perform useful tasks, they will need to employ powerful error mitigation techniques. Quasi-probability methods can permit perfect error compensation at the cost of additional circuit executions, provided that the
A general method to mitigate the effect of errors in quantum circuits is outlined. The method is developed in sight of characteristics that an ideal method should possess and to ameliorate an existing method which only mitigates state preparation and
Contemporary quantum computers have relatively high levels of noise, making it difficult to use them to perform useful calculations, even with a large number of qubits. Quantum error correction is expected to eventually enable fault-tolerant quantum