ﻻ يوجد ملخص باللغة العربية
Resolvent analysis identifies the most responsive forcings and most receptive states of a dynamical system, in an input--output sense, based on its governing equations. Interest in the method has continued to grow during the past decade due to its potential to reveal structures in turbulent flows, to guide sensor/actuator placement, and for flow control applications. However, resolvent analysis requires access to high-fidelity numerical solvers to produce the linearized dynamics operator. In this work, we develop a purely data-driven algorithm to perform resolvent analysis to obtain the leading forcing and response modes, without recourse to the governing equations, but instead based on snapshots of the transient evolution of linearly stable flows. The formulation of our method follows from two established facts: $1)$ dynamic mode decomposition can approximate eigenvalues and eigenvectors of the underlying operator governing the evolution of a system from measurement data, and $2)$ a projection of the resolvent operator onto an invariant subspace can be built from this learned eigendecomposition. We demonstrate the method on numerical data of the linearized complex Ginzburg--Landau equation and of three-dimensional transitional channel flow, and discuss data requirements. The ability to perform resolvent analysis in a completely equation-free and adjoint-free manner will play a significant role in lowering the barrier of entry to resolvent research and applications.
The conceptual picture underlying resolvent analysis(RA) is that the nonlinear term in the Navier-Stokes(NS) equations provides an intrinsic forcing to the linear dynamics, a description inspired by control theory. The inverse of the linear operator,
An analysis of the statistics of the non-linear terms in resolvent analysis is performed in this work for turbulent Couette flow at low Reynolds number. Data from a direct numerical simulation of a minimal flow unit, at Reynolds number 400, is post-p
Using various techniques from dynamical systems theory, we rigorously study an experimentally validated model by [Barkley et al., Nature, 526:550-553, 2015], which describes the rise of turbulent pipe flow via a PDE system of reduced complexity. The
Advanced nuclear reactors often exhibit complex thermal-fluid phenomena during transients. To accurately capture such phenomena, a coarse-mesh three-dimensional (3-D) modeling capability is desired for modern nuclear-system code. In the coarse-mesh 3
The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system theoretic properties and to construct control laws, without using a system model. Persis