ترغب بنشر مسار تعليمي؟ اضغط هنا

Speakers Fill Lexical Semantic Gaps with Context

301   0   0.0 ( 0 )
 نشر من قبل Tiago Pimentel
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Lexical ambiguity is widespread in language, allowing for the reuse of economical word forms and therefore making language more efficient. If ambiguous words cannot be disambiguated from context, however, this gain in efficiency might make language less clear -- resulting in frequent miscommunication. For a language to be clear and efficiently encoded, we posit that the lexical ambiguity of a word type should correlate with how much information context provides about it, on average. To investigate whether this is the case, we operationalise the lexical ambiguity of a word as the entropy of meanings it can take, and provide two ways to estimate this -- one which requires human annotation (using WordNet), and one which does not (using BERT), making it readily applicable to a large number of languages. We validate these measures by showing that, on six high-resource languages, there are significant Pearson correlations between our BERT-based estimate of ambiguity and the number of synonyms a word has in WordNet (e.g. $rho = 0.40$ in English). We then test our main hypothesis -- that a words lexical ambiguity should negatively correlate with its contextual uncertainty -- and find significant correlations on all 18 typologically diverse languages we analyse. This suggests that, in the presence of ambiguity, speakers compensate by making contexts more informative.



قيم البحث

اقرأ أيضاً

In lexical semantics, full-sentence segmentation and segment labeling of various phenomena are generally treated separately, despite their interdependence. We hypothesize that a unified lexical semantic recognition task is an effective way to encapsu late previously disparate styles of annotation, including multiword expression identification / classification and supersense tagging. Using the STREUSLE corpus, we train a neural CRF sequence tagger and evaluate its performance along various axes of annotation. As the label set generalizes that of previous tasks (PARSEME, DiMSUM), we additionally evaluate how well the model generalizes to those test sets, finding that it approaches or surpasses existing models despite training only on STREUSLE. Our work also establishes baseline models and evaluation metrics for integrated and accurate modeling of lexical semantics, facilitating future work in this area.
While there is a large amount of research in the field of Lexical Semantic Change Detection, only few approaches go beyond a standard benchmark evaluation of existing models. In this paper, we propose a shift of focus from change detection to change discovery, i.e., discovering novel word senses over time from the full corpus vocabulary. By heavily fine-tuning a type-based and a token-based approach on recently published German data, we demonstrate that both models can successfully be applied to discover new words undergoing meaning change. Furthermore, we provide an almost fully automated framework for both evaluation and discovery.
Lexical inference in context (LIiC) is the task of recognizing textual entailment between two very similar sentences, i.e., sentences that only differ in one expression. It can therefore be seen as a variant of the natural language inference task tha t is focused on lexical semantics. We formulate and evaluate the first approaches based on pretrained language models (LMs) for this task: (i) a few-shot NLI classifier, (ii) a relation induction approach based on handcrafted patterns expressing the semantics of lexical inference, and (iii) a variant of (ii) with patterns that were automatically extracted from a corpus. All our approaches outperform the previous state of the art, showing the potential of pretrained LMs for LIiC. In an extensive analysis, we investigate factors of success and failure of our three approaches.
We present an approach to combining distributional semantic representations induced from text corpora with manually constructed lexical-semantic networks. While both kinds of semantic resources are available with high lexical coverage, our aligned re source combines the domain specificity and availability of contextual information from distributional models with the conciseness and high quality of manually crafted lexical networks. We start with a distributional representation of induced senses of vocabulary terms, which are accompanied with rich context information given by related lexical items. We then automatically disambiguate such representations to obtain a full-fledged proto-conceptualization, i.e. a typed graph of induced word senses. In a final step, this proto-conceptualization is aligned to a lexical ontology, resulting in a hybrid aligned resource. Moreover, unmapped induced senses are associated with a semantic type in order to connect them to the core resource. Manual evaluations against ground-truth judgments for different stages of our method as well as an extrinsic evaluation on a knowledge-based Word Sense Disambiguation benchmark all indicate the high quality of the new hybrid resource. Additionally, we show the benefits of enriching top-down lexical knowledge resources with bottom-up distributional information from text for addressing high-end knowledge acquisition tasks such as cleaning hypernym graphs and learning taxonomies from scratch.
Current methods for active speak er detection focus on modeling short-term audiovisual information from a single speaker. Although this strategy can be enough for addressing single-speaker scenarios, it prevents accurate detection when the task is to identify who of many candidate speakers are talking. This paper introduces the Active Speaker Context, a novel representation that models relationships between multiple speakers over long time horizons. Our Active Speaker Context is designed to learn pairwise and temporal relations from an structured ensemble of audio-visual observations. Our experiments show that a structured feature ensemble already benefits the active speaker detection performance. Moreover, we find that the proposed Active Speaker Context improves the state-of-the-art on the AVA-ActiveSpeaker dataset achieving a mAP of 87.1%. We present ablation studies that verify that this result is a direct consequence of our long-term multi-speaker analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا