ﻻ يوجد ملخص باللغة العربية
The lepton angular distribution coefficients $A_i$ for $Z$ boson production in $pp$ and $bar p p$ collisions have been measured at the LHC and the Tevatron. A recent study showed that many features of the measured angular distribution coefficients, including the transverse momentum ($q_T$) and rapidity dependencies and the violation of the Lam-Tung relation, can be well described using an intuitive geometric approach. In this paper, we extend this geometric approach to describe the angular distribution coefficients for $W$ boson produced in $bar{p} p$ collisions at the Tevatron. We first compare the data with a perturbative QCD calculation at $mathcal{O}(alpha_s^2)$. We then show that the data and QCD calculations can be well described with the geometric approach. Implications for future studies at the LHC energy are also discussed.
We present a comparison of data of lepton angular distributions of Drell-Yan/$Z$ production with the fixed-order pQCD calculations by which the baseline of pQCD effects is illustrated. As for the $Z$ production, we predict that $A_0$ and $A_2$ for $Z
Precision tests of the Standard Model in the Strong and Electroweak sectors play an important role, among the physics goals of LHC experiments. Because of the nature of proton-proton processes, observables based on the measurement of the direction an
The lepton angular distributions of the Drell-Yan process in fixed-target experiments are investigated by NLO and NNLO perturbative QCD. We present the calculated angular parameters $lambda$, $mu$, $ u$ and the degree of violation of the Lam-Tung rel
Within the framework of transverse-momentum-dependent factorization, we investigate for the first time the impact of a flavor-dependent intrinsic transverse momentum of quarks on the production of $W^{pm}$ bosons in proton-proton collisions at $sqrt{
We demonstrate that the multi-top productions efficiently probe the CP-property of top-Higgs interaction and the Higgs-boson width at the LHC. The four top-quark production alone can exclude a purely CP-odd top-quark Yukawa coupling at the 13~TeV LHC