ﻻ يوجد ملخص باللغة العربية
Smart and reconfigurable wireless communication environments can be established by exploiting well-designed intelligent reflecting surfaces (IRSs) to shape the communication channels. In this paper, we investigate how multiple IRSs affect the performance of multi-user full-duplex communication systems under hardware impairment at each node, wherein the base station (BS) and the uplink users are subject to maximum transmission power constraints. Firstly, the uplink-downlink system weighted sum-rate (SWSR) is derived which serves as a system performance metric. Then, we formulate the resource allocation design for the maximization of SWSR as an optimization problem which jointly optimizes the beamforming and the combining vectors at the BS, the transmit powers of the uplink users, and the phase shifts of multiple IRSs. Since the SWSR optimization problem is non-convex, an efficient iterative alternating approach is proposed to obtain a suboptimal solution for the design problem considered and its complexity is also discussed. In particular, we firstly reformulate the main problem into an equivalent weighted minimum mean-square-error form and then transform it into several convex sub-problems which can be analytically solved for given phase shifts. Then, the IRSs phases are optimized via a gradient ascent-based algorithm. Finally, numerical results are presented to clarify how multiple IRSs enhance the performance metric under hardware impairment.
We focus on the realistic maximization of the uplink minimum signal-to-interference-plus-noise ratio (SINR) of a general multiple-input single-output (MISO) system assisted by an intelligent reflecting surface (IRS) in the large system limit accounti
MIMO interference network optimization is important for increasingly crowded wireless communication networks. We provide a new algorithm, named Dual Link algorithm, for the classic problem of weighted sum-rate maximization for MIMO multiaccess channe
This letter proposes a new full-duplex (FD) secrecy communication scheme for the unmanned aerial vehicle (UAV) and investigates its optimal design to achieve the maximum energy efficiency (EE) of the UAV. Specifically, the UAV receives the confidenti
This paper investigates robust and secure multiuser multiple-input single-output (MISO) downlink communications assisted by a self-sustainable intelligent reflection surface (IRS), which can simultaneously reflect and harvest energy from the received
In this paper, we focus on intelligent reflecting surface (IRS) assisted multi-antenna communications with transceiver hardware impairments encountered in practice. In particular, we aim to maximize the received signal-to-noise ratio (SNR) taking int