ﻻ يوجد ملخص باللغة العربية
We perform a feasibility study of a beam dump experiment at the International Linear Collider (ILC). To investigate the sensitivity to new light particles at the experiment, we consider models for axion-like particles (ALPs) and a light scalar particle coupled to charged leptons. For both models, we show that the detection sensitivity is almost an order of magnitude higher than other beam dump experiments in the small coupling region. For ALPs, it is shown that the ILC beam dump experiment is highly complementary to bounds from astrophysics. In addition, for the model of the scalar particle, the region favored by the muon $g-2$ experiment can be explored.
There are broadly three channels to probe axion-like particles (ALPs) produced in the laboratory: through their subsequent decay to Standard Model (SM) particles, their scattering with SM particles, or their subsequent conversion to photons. Decay an
We investigate features of the sterile neutrinos in the presence of a light gauge boson $X^mu$ that couples to the neutrino sector. The novel bounds on the active-sterile neutrino mixings $| U_{ell 4} |^2$, especially for tau flavor ($l = tau$), from
A wealth of new physics models which are motivated by questions such as the nature of dark matter, the origin of the neutrino masses and the baryon asymmetry in the universe, predict the existence of hidden sectors featuring new particles. Among the
We investigate the possibility of the identification of TeV physics models including WIMP dark matter at the International Linear Collider. Many TeV physics models contain a WIMP dark matter (chi^0) and charged new particle (chi^{pm}) which interacts
A novel mechanism to produce and detect Light Dark Matter in experiments making use of GeV electrons (and positrons) impinging on a thick target (beam-dump) is proposed. The positron-rich environment produced by the electromagnetic shower allows to p