ﻻ يوجد ملخص باللغة العربية
Incremental processing is widely-adopted in many applications, ranging from incremental view maintenance, stream computing, to recently emerging progressive data warehouse and intermittent query processing. Despite many algorithms developed on this topic, none of them can produce an incremental plan that always achieves the best performance, since the optimal plan is data dependent. In this paper, we develop a novel cost-based optimizer framework, called Tempura, for optimizing incremental data processing. We propose an incremental query planning model called TIP based on the concept of time-varying relations, which can formally model incremental processing in its most general form. We give a full specification of Tempura, which can not only unify various existing techniques to generate an optimal incremental plan, but also allow the developer to add their rewrite rules. We study how to explore the plan space and search for an optimal incremental plan. We conduct a thorough experimental evaluation of Tempura in various incremental processing scenarios to show its effectiveness and efficiency.
Ontology-based data access (OBDA) is a popular paradigm for querying heterogeneous data sources by connecting them through mappings to an ontology. In OBDA, it is often difficult to reconstruct why a tuple occurs in the answer of a query. We address
In this paper, we propose a plugin-based framework for RDF stream processing named PRSP. Within this framework, we can employ SPARQL query engines to process C-SPARQL queries with maintaining the high performance of those engines in a simple way. Tak
Explaining why an answer is (or is not) returned by a query is important for many applications including auditing, debugging data and queries, and answering hypothetical questions about data. In this work, we present the first practical approach for
We propose hMDAP, a hybrid framework for large-scale data analytical processing on Spark, to support multi-paradigm process (incl. OLAP, machine learning, and graph analysis etc.) in distributed environments. The framework features a three-layer data
Predicting the execution time of queries is an important problem with applications in scheduling, service level agreements and error detection. During query planning, a cost is associated with the chosen execution plan and used to rank competing plan