ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative rates and opacity calculations in Ce II-IV Multiconfiguration Dirac-Hartree-Fock radiative parameters for emission lines in Ce II-IV ions and cerium opacity calculations for kilonovae

63   0   0.0 ( 0 )
 نشر من قبل Patrick Palmeri
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-scale calculations of atomic structures and radiative properties have been carried out for singly, doubly- and trebly ionized cerium. For this purpose, the purely relativistic multiconfiguration Dirac-Hartree-Fock (MCDHF) method was used, taking into account the effects of valence-valence and core-valence electronic correlations in detail. The results obtained were then used to calculate the expansion opacities characterizing the kilonovae observed as a result of neutron star mergers. Comparisons with previously published experimental and theoretical studies have shown that the results presented in this work are the most complete currently available, in terms of quantity and quality, concerning the atomic data and monochromatic opacities for Ce II, Ce III and Ce IV ions.

قيم البحث

اقرأ أيضاً

The electron-ion recombination rate coefficient for Si IV forming Si III was measured at the heavy-ion storage-ring TSR. The experimental electron-ion collision energy range of 0-186 eV encompassed the 2p(6) nl nl dielectronic recombination (DR) reso nances associated with 3s to nl core excitations, 2s 2p(6) 3s nl nl resonances associated with 2s to nl (n=3,4) core excitations, and 2p(5) 3s nl nl resonances associated with 2p to nl (n=3,...,infinity) core excitations. The experimental DR results are compared with theoretical calculations using the multiconfiguration Dirac-Fock (MCDF) method for DR via the 3s to 3p nl and 3s to 3d nl (both n=3,...,6) and 2p(5) 3s 3l nl (n=3,4) capture channels. Finally, the experimental and theoretical plasma DR rate coefficients for Si IV forming Si III are derived and compared with previously available results.
Relativistic multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations with configuration interaction (CI) are carried out for the $^{1}S_{0}$ and $^{3}P_{0,1}^o$ states in neutral ytterbium by use of the available GRASP2018 package. From the result ant atomic state functions and the RIS4 extension, we evaluate the mass and field shift parameters for the $^{1}S_{0}-,^{3}P_{0}^o$ (clock) and $^{1}S_{0}-,^{3}P_{1}^o$ (intercombination) lines. We present improved estimates of the nuclear charge parameters, $lambda^{A,A}$, and differences in mean-square charge radii, $deltalangle r^2rangle^{A,A}$, and examine the second-order hyperfine interaction for the $^{3}P_{0,1}^o$ states. Isotope shifts for the clock transition have been estimated by three largely independent means from which we predict the unknown clock line frequencies in bosonic Yb isotopes. Knowledge of these line frequencies has implications for King plot nonlinearity tests and the search for beyond Standard-Model signatures.
Coalescence of binary neutron star give rise to electromagnetic emission, kilonova, powered by radioactive decays of r-process nuclei. Observations of kilonova associated with GW170817 provided unique opportunity to study the heavy element synthesis in the Universe. However, atomic data of r-process elements to decipher the light curves and spectral features of kilonova are not fully constructed yet. In this paper, we perform extended atomic calculations of neodymium (Nd, Z=60) to study the impact of accuracies in atomic calculations to the astrophysical opacities. By employing multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction methods, we calculate energy levels and transition data of electric dipole transitions for Nd II, Nd III, and Nd IV ions. Compared with previous calculations, our new results provide better agreement with the experimental data. The accuracy of energy levels was achieved in the present work 10 %, 3 % and 11 % for Nd II, Nd III and Nd IV, respectively, comparing with the NIST database. We confirm that the overall properties of the opacity are not significantly affected by the accuracies of the atomic calculations. The impact to the Planck mean opacity is up to a factor of 1.5, which affects the timescale of kilonova at most 20 %. However, we find that the wavelength dependent features in the opacity are affected by the accuracies of the calculations. We emphasize that accurate atomic calculations, in particular for low-lying energy levels, are important to provide predictions of kilonova light curves and spectra.
Using the multiconfiguration Dirac-Hartree-Fock and the relativistic configuration interaction methods, a consistent set of transition energies and radiative transition data for the main states of the $2s^2 2p^4$, $2s 2p^5$, $2p^6$, $2s^2 2p^3 3s$, $ 2s^2 2p^3 3p$, $2s^2 2p^3 3d$, $2s 2p^4 3s$, $2s 2p^4 3p$, and $2s 2p^4 3d$ configurations in O-like Ions between Ar XI ($Z = 18$) and Cr XVII ($Z = 24$) is provided. Our data set is compared with the NIST compiled values and previous calculations. The data are accurate enough for identification and deblending of new emission lines from hot astrophysical and laboratory plasmas. The amount of data of high accuracy is significantly increased for the $n = 3$ states of several O-like ions, where experimental data are very scarce.
The multi-configuration Dirac-Hartree-Fock method was employed to calculate the total and excitation energies, oscillator strengths and hyperfine structure constants for low-lying levels of Sm I. In the first-order perturbation approximation, we syst ematically analyzed correlation effects from each electrons and electron pairs. It was found that the core correlations are of importance for physical quantities concerned. Based on the analysis, the important configuration state wave functions were selected to constitute atomic state wave functions. By using this computational model, our excitation energies, oscillator strengths, and hyperfine structure constants are in better agreement with experimental values than earlier theoretical works.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا