ترغب بنشر مسار تعليمي؟ اضغط هنا

Pairs of Giant Shock Waves (N-Waves) in Merging Galaxy Clusters

129   0   0.0 ( 0 )
 نشر من قبل Congyao Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When a subcluster merges with a larger galaxy cluster, a bow shock is driven ahead of the subcluster. At a later merger stage, this bow shock separates from the subcluster, becoming a runaway shock that propagates down the steep density gradient through the cluster outskirts and approximately maintains its strength and the Mach number. Such shocks are plausible candidates for producing radio relics in the periphery of clusters. We argue that, during the same merger stage, a secondary shock is formed much closer to the main cluster center. A close analog of this structure is known in the usual hydrodynamics as N-waves, where the trailing part of the N is the result of the non-linear evolution of a shock. In merging clusters, spherical geometry and stratification could further promote its development. Both the primary and the secondary shocks are the natural outcome of a single merger event and often both components of the pair should be present. However, in the radio band, the leading shock could be more prominent, while the trailing shock might conversely be more easily seen in X-rays. The latter argument implies that for some of the (trailing) shocks found in X-ray data, it might be difficult to identify their partner leading shocks or the merging subclusters, which are farther away from the cluster center. We argue that the Coma cluster and A2744 could be two examples in a post-merger state with such well-separated shock pairs.

قيم البحث

اقرأ أيضاً

Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees t hat a bubble loses most of its energy to the ICM after crossing several pressure scale heights. However, actual processes responsible for transferring the energy to the ICM are still being debated. One attractive possibility is the excitation of internal waves, which are trapped in the clusters core and eventually dissipate. Here we show that a sufficient condition for efficient excitation of these waves in stratified cluster atmospheres is flattening of the bubbles in the radial direction. In our numerical simulations, we model the bubbles phenomenologically as rigid bodies buoyantly rising in the stratified cluster atmosphere. We find that the terminal velocities of the flattened bubbles are small enough so that the Froude number ${rm Fr}lesssim 1$. The effects of stratification make the dominant contribution to the total drag force balancing the buoyancy force. In particular, clear signs of internal waves are seen in the simulations. These waves propagate horizontally and downwards from the rising bubble, spreading their energy over large volumes of the ICM. If our findings are scaled to the conditions of the Perseus cluster, the expected terminal velocity is $sim100-200{,rm km,s^{-1}}$ near the cluster cores, which is in broad agreement with direct measurements by the Hitomi satellite.
253 - M. Lemoine 2016
As a shock front interacts with turbulence, it develops corrugation which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating from downstream, outrunni ng the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves.
93 - Ji-Hoon Ha , 2017
X-ray shocks and radio relics detected in the cluster outskirts are commonly interpreted as shocks induced by mergers of sub-clumps. We study the properties of merger shocks in merging galaxy clusters, using a set of cosmological simulations for the large-scale structure formation of the universe. As a representative case, we here focus on the simulated clusters that undergo almost head-on collisions with mass ratio $sim2$. Due to the turbulent nature of the intracluster medium, shock surfaces are not smooth, but composed of shocks with different Mach numbers. As the merger shocks expand outward from the core to the outskirts, the average Mach number, $left<M_sright>$, increases in time. We suggest that the shocks propagating along the merger axis could be manifested as X-ray shocks and/or radio relics. The kinetic energy through the shocks, $F_phi$, peaks at $sim1$ Gyr after their initial launching, or at $sim1-2$ Mpc from the core. Because of the Mach number dependent model adopted here for the cosmic ray (CR) acceleration efficiency, their CR-energy-weighted Mach number is higher with $left< M_s right>_{rm CR}sim3-4$, compared to the kinetic-energy-weighted Mach number, $left<M_sright>_{phi}sim2-3$. Most energetic shocks are to be found ahead of the lighter dark matter (DM) clump, while the heavier DM clump is located in the opposite side of clusters. Although our study is limited to the merger case considered, the results such as the means and variations of shock properties and their time evolution could be compared with the observed characteristics of merger shocks, constraining interpretations of relevant observations.
Cosmological shock waves are ubiquitous to cosmic structure formation and evolution. As a consequence, they play a major role in the energy distribution and thermalization of the intergalactic medium (IGM). We analyze the Mach number distribution in the Dianoga simulations of galaxy clusters performed with the SPH code GADGET-3. The simulations include the effects of radiative cooling, star formation, metal enrichment, supernova and active galactic nuclei feedback. A grid-based shock-finding algorithm is applied in post-processing to the outputs of the simulations. This procedure allows us to explore in detail the distribution of shocked cells and their strengths as a function of cluster mass, redshift and baryonic physics. We also pay special attention to the connection between shock waves and the cool-core/non-cool core (CC/NCC) state and the global dynamical status of the simulated clusters. In terms of general shock statistics, we obtain a broad agreement with previous works, with weak (low-Mach number) shocks filling most of the volume and processing most of the total thermal energy flux. As a function of cluster mass, we find that massive clusters seem more efficient in thermalising the IGM and tend to show larger external accretion shocks than less massive systems. We do not find any relevant difference between CC and NCC clusters. However, we find a mild dependence of the radial distribution of the shock Mach number on the cluster dynamical state, with disturbed systems showing stronger shocks than regular ones throughout the cluster volume.
427 - A. Marcowith , A. Bret , A. Bykov 2016
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova rem nants, pulsar winds and their nebulae, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in-situ observations, analytical and numerical developments. A particular emphasize is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا