ﻻ يوجد ملخص باللغة العربية
With the rapid development of online education in recent years, there has been an increasing number of learning platforms that provide students with multi-step questions to cultivate their problem-solving skills. To guarantee the high quality of such learning materials, question designers need to inspect how students problem-solving processes unfold step by step to infer whether students problem-solving logic matches their design intent. They also need to compare the behaviors of different groups (e.g., students from different grades) to distribute questions to students with the right level of knowledge. The availability of fine-grained interaction data, such as mouse movement trajectories from the online platforms, provides the opportunity to analyze problem-solving behaviors. However, it is still challenging to interpret, summarize, and compare the high dimensional problem-solving sequence data. In this paper, we present a visual analytics system, QLens, to help question designers inspect detailed problem-solving trajectories, compare different student groups, distill insights for design improvements. In particular, QLens models problem-solving behavior as a hybrid state transition graph and visualizes it through a novel glyph-embedded Sankey diagram, which reflects students problem-solving logic, engagement, and encountered difficulties. We conduct three case studies and three expert interviews to demonstrate the usefulness of QLens on real-world datasets that consist of thousands of problem-solving traces.
With increasing popularity in online learning, a surge of E-learning platforms have emerged to facilitate education opportunities for k-12 (from kindergarten to 12th grade) students and with this, a wealth of information on their learning logs are ge
This paper describes an ongoing multi-scale visual analytics approach for exploring and analyzing biomedical knowledge at scale.We utilize global and local views, hierarchical and flow-based graph layouts, multi-faceted search, neighborhood recommend
The proliferation of text messaging for mobile health is generating a large amount of patient-doctor conversations that can be extremely valuable to health care professionals. We present ConVIScope, a visual text analytic system that tightly integrat
Many processes, from gene interaction in biology to computer networks to social media, can be modeled more precisely as temporal hypergraphs than by regular graphs. This is because hypergraphs generalize graphs by extending edges to connect any numbe
Visual analytics for machine learning has recently evolved as one of the most exciting areas in the field of visualization. To better identify which research topics are promising and to learn how to apply relevant techniques in visual analytics, we s