ﻻ يوجد ملخص باللغة العربية
Although ammonia is an abundant molecule commonly observed towards the dense interstellar medium, it has not yet been established whether its main formation route is from gas-phase ion-molecule reactions or grain-surface hydrogen additions on adsorbed nitrogen atoms. Deuterium fractionation can be used as a tool to constrain formation mechanisms. High abundances of deuterated molecules are routinely observed in the dense interstellar medium, with the ratio between deuterated molecules and the main isotopologue enhanced by several orders of magnitude with respect to the elemental D/H ratio. In the case of ammonia, the detection of its triply deuterated isotopologue hints at high abundances of the deuterated intermediate nitrogen radicals, ND, NHD and ND$_2$. So far however, only ND has been detected in the interstellar medium. In this paper, to constrain the formation of ammonia, we aim at determining the NHD/NH$_2$ and ND$_2$/NHD abundance ratios, and compare them with the predictions of both pure gas-phase and grain-surface chemical models. We searched for the fundamental rotational transitions of NHD and ND$_2$ towards the class 0 protostar IRAS16293-2422, towards which NH, NH$_2$ and ND had been previously detected. Both NHD and ND$_2$ are detected in absorption towards the source. The relative abundance ratios NH$_2$ : NHD : ND$_2$ are close to 8 : 4 : 1. These ratios can be reproduced by our gas-phase chemical model within a factor of two-three. Statistical ratios as expected from grain-surface chemistry are also consistent with our data. Further investigations of the ortho-to-para ratio in ND$_2$ , both theoretical and observational, could bring new constraints to better understand nitrogen hydride chemistry.
Deuterium fractionation processes in the interstellar medium (ISM) have been shown to be highly efficient in the family of nitrogen hydrides. To date, observations were limited to ammonia (NH$_2$D, NHD$_2$, ND$_3$) and imidogen radical (ND) isotopolo
Context. The increased sensitivity and high spectral resolution of millimeter telescopes allow the detection of an increasing number of isotopically substituted molecules in the interstellar medium. The 14N/ 15N ratio is difficult to measure directly
Nitrogen is the fifth most abundant element in the Universe, yet the gas-phase chemistry of N-bearing species remains poorly understood. Nitrogen hydrides are key molecules of nitrogen chemistry. Their abundance ratios place strong constraints on the
Using the Green Bank Telescope (GBT), we have obtained accurate measurements of the $^{14}$N/$^{15}$N isotopic ratio in ammonia in two nearby cold, dense molecular clouds, Barnard~1 and NGC 1333. The $^{14}$N/$^{15}$N ratio in Barnard~1, $334 pm 50$
The [HDO]/[H2O] ratio is a crucial parameter for probing the history of water formation. So far, it has been measured for only three solar type protostars and yielded different results, possibly pointing to a substantially different history in their