ﻻ يوجد ملخص باللغة العربية
We report molecular gas mass estimates obtained from a stacking analysis of CO line emission in the ALMA Spectroscopic Survey (ASPECS) using the spectroscopic redshifts from the optical integral field spectroscopic survey by the Multi Unit Spectroscopic Explorer (MUSE) of the {it Hubble} Ultra Deep Field (HUDF). Stacking was performed on subsets of the sample of galaxies classified by their stellar mass and position relative to the main-sequence relation (on, above, below). Among all the CO emission lines, from cotwoone to CO(6-5), with redshifts accessible via the ASPECS Band~3 and the MUSE data, cotwoone provides the strongest constraints on the molecular gas content. We detect cotwoone emission in galaxies down to stellar masses of $log{(M_*/M_odot)}=10.0$. Below this stellar mass, we present a new constraint on the molecular gas content of $zsim1.5$ main-sequence galaxies by stacking based on the MUSE detections. We find that the molecular gas mass of main-sequence galaxies continuously decreases with stellar mass down to $log{(M_*/M_odot)}approx9.0$. Assuming a metallicity-based CO--to--$rm H_2$ conversion factor, the molecular gas-to-stellar mass ratio from $log{(M_*/M_odot)}sim9.0$ to $sim10.0$ does not seem to decrease as fast as for $log{(M_*/M_odot)}>10.0$, which is in line with simulations and studies at lower redshift. The inferred molecular gas density $rho{rm (H_2)}=(0.49pm0.09)times10^8,{rm M_odot,Mpc^{-3}}$ of MUSE-selected galaxies at $zsim1.5$ is comparable with the one derived in the HUDF with a different CO selection. Using the MUSE data we recover most of the CO emission in our deep ALMA observations through stacking, demonstrating the synergy between volumetric surveys obtained at different wavebands.
We use the results from the ALMA large program ASPECS, the spectroscopic survey in the Hubble Ultra Deep Field (HUDF), to constrain CO luminosity functions of galaxies and the resulting redshift evolution of $rho$(H$_2$). The broad frequency range co
We discuss the nature and physical properties of gas-mass selected galaxies in the ALMA spectroscopic survey (ASPECS) of the Hubble Ultra Deep Field (HUDF). We capitalize on the deep optical integral-field spectroscopy from the MUSE HUDF Survey and m
We investigate the CO excitation and interstellar medium (ISM) conditions in a cold gas mass-selected sample of 22 star-forming galaxies at $z=0.46-3.60$, observed as part of the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field (ASPECS). Comb
We present a power spectrum analysis of the ALMA Spectroscopic Survey Large Program (ASPECS LP) data from 84 to 115 GHz. These data predominantly probe small-scale fluctuations ($k=10$-$100$ h Mpc$^{-1}$) in the aggregate CO emission in galaxies at $
Using the deepest 1.2 mm continuum map to date in the Hubble Ultra Deep Field obtained as part of the ALMA Spectroscopic Survey (ASPECS) large program, we measure the cosmic density of dust and implied gas (H$_{2}+$H I) mass in galaxies as a function