ﻻ يوجد ملخص باللغة العربية
Several applications in the scientific simulation of physical systems can be formulated as control/optimization problems. The computational models for such systems generally contain hyperparameters, which control solution fidelity and computational expense. The tuning of these parameters is non-trivial and the general approach is to manually `spot-check for good combinations. This is because optimal hyperparameter configuration search becomes impractical when the parameter space is large and when they may vary dynamically. To address this issue, we present a framework based on deep reinforcement learning (RL) to train a deep neural network agent that controls a model solve by varying parameters dynamically. First, we validate our RL framework for the problem of controlling chaos in chaotic systems by dynamically changing the parameters of the system. Subsequently, we illustrate the capabilities of our framework for accelerating the convergence of a steady-state CFD solver by automatically adjusting the relaxation factors of discretized Navier-Stokes equations during run-time. The results indicate that the run-time control of the relaxation factors by the learned policy leads to a significant reduction in the number of iterations for convergence compared to the random selection of the relaxation factors. Our results point to potential benefits for learning adaptive hyperparameter learning strategies across different geometries and boundary conditions with implications for reduced computational campaign expenses. footnote{Data and codes available at url{https://github.com/Romit-Maulik/PAR-RL}}
Reduced Order Modeling (ROM) for engineering applications has been a major research focus in the past few decades due to the unprecedented physical insight into turbulence offered by high-fidelity CFD. The primary goal of a ROM is to model the key ph
In this paper, a coupling lattice Boltzmann (LB) model for simulating thermal flows on the standard D2Q9 lattice is developed in the framework of the double-distribution-function (DDF) approach in which the viscous heat dissipation and compression wo
We develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow
Soft solids in fluids find wide range of applications in science and engineering, especially in the study of biological tissues and membranes. In this study, an Eulerian finite volume approach has been developed to simulate fully resolved incompressi
The general synthetic iteration scheme (GSIS) is extended to find the steady-state solution of nonlinear gas kinetic equation, removing the long-standing problems of slow convergence and requirement of ultra-fine grids in near-continuum flows. The ke