ﻻ يوجد ملخص باللغة العربية
Face restoration is important in face image processing, and has been widely studied in recent years. However, previous works often fail to generate plausible high quality (HQ) results for real-world low quality (LQ) face images. In this paper, we propose a new progressive semantic-aware style transformation framework, named PSFR-GAN, for face restoration. Specifically, instead of using an encoder-decoder framework as previous methods, we formulate the restoration of LQ face images as a multi-scale progressive restoration procedure through semantic-aware style transformation. Given a pair of LQ face image and its corresponding parsing map, we first generate a multi-scale pyramid of the inputs, and then progressively modulate different scale features from coarse-to-fine in a semantic-aware style transfer way. Compared with previous networks, the proposed PSFR-GAN makes full use of the semantic (parsing maps) and pixel (LQ images) space information from different scales of input pairs. In addition, we further introduce a semantic aware style loss which calculates the feature style loss for each semantic region individually to improve the details of face textures. Finally, we pretrain a face parsing network which can generate decent parsing maps from real-world LQ face images. Experiment results show that our model trained with synthetic data can not only produce more realistic high-resolution results for synthetic LQ inputs and but also generalize better to natural LQ face images compared with state-of-the-art methods. Codes are available at https://github.com/chaofengc/PSFRGAN.
This paper studies the problem of blind face restoration from an unconstrained blurry, noisy, low-resolution, or compressed image (i.e., degraded observation). For better recovery of fine facial details, we modify the problem setting by taking both t
Face restoration is an inherently ill-posed problem, where additional prior constraints are typically considered crucial for mitigating such pathology. However, real-world image prior are often hard to simulate with precise mathematical models, which
Recent reference-based face restoration methods have received considerable attention due to their great capability in recovering high-frequency details on real low-quality images. However, most of these methods require a high-quality reference image
Blind face restoration (BFR) from severely degraded face images in the wild is a very challenging problem. Due to the high illness of the problem and the complex unknown degradation, directly training a deep neural network (DNN) usually cannot lead t
Although significant progress has been made in synthesizing high-quality and visually realistic face images by unconditional Generative Adversarial Networks (GANs), there still lacks of control over the generation process in order to achieve semantic