ﻻ يوجد ملخص باللغة العربية
Being able to estimate the traversability of the area surrounding a mobile robot is a fundamental task in the design of a navigation algorithm. However, the task is often complex, since it requires evaluating distances from obstacles, type and slope of terrain, and dealing with non-obvious discontinuities in detected distances due to perspective. In this paper, we present an approach based on deep learning to estimate and anticipate the traversing score of different routes in the field of view of an on-board RGB camera. The backbone of the proposed model is based on a state-of-the-art deep segmentation model, which is fine-tuned on the task of predicting route traversability. We then enhance the models capabilities by a) addressing domain shifts through gradient-reversal unsupervised adaptation, and b) accounting for the specific safety requirements of a mobile robot, by encouraging the model to err on the safe side, i.e., penalizing errors that would cause collisions with obstacles more than those that would cause the robot to stop in advance. Experimental results show that our approach is able to satisfactorily identify traversable areas and to generalize to unseen locations.
We present VUNet, a novel view(VU) synthesis method for mobile robots in dynamic environments, and its application to the estimation of future traversability. Our method predicts future images for given virtual robot velocity commands using only RGB
Road curb detection is important for autonomous driving. It can be used to determine road boundaries to constrain vehicles on roads, so that potential accidents could be avoided. Most of the current methods detect road curbs online using vehicle-moun
As synthetic imagery is used more frequently in training deep models, it is important to understand how different synthesis techniques impact the performance of such models. In this work, we perform a thorough evaluation of the effectiveness of sever
Prior work on 6-DoF object pose estimation has largely focused on instance-level processing, in which a textured CAD model is available for each object being detected. Category-level 6-DoF pose estimation represents an important step toward developin
This article studies the domain adaptation problem in person re-identification (re-ID) under a learning via translation framework, consisting of two components, 1) translating the labeled images from the source to the target domain in an unsupervised