ﻻ يوجد ملخص باللغة العربية
Polaron tunneling is a prominent example of a problem characterized by different energy scales, for which the standard quantum Monte Carlo methods face a slowdown problem. We propose a new quantum-tunneling Monte Carlo (QTMC) method which is free from this issue and can be used for a wide range of tunneling phenomena. We apply it to study an impurity interacting with a one-dimensional Bose-Einstein condensate and simultaneously trapped in an external double-well potential. Our scheme works for an arbitrary coupling between the particle and condensate and, at the same time, allows for an account of tunneling effects. We discover two distinct quasi-particle peaks associated, respectively, with the phonon-assisted tunneling and the self-trapping of the impurity, which are in a crossover regime for the system modeled. We observe and analyze changes in the weights and spectral positions of the peaks (or, equally, effective masses of the quasi-particles) when the coupling strength is increased. Possible experimental realizations using cold atoms are discussed.
We consider two large polaron systems that are described by a Fr{o}hlich type of Hamiltonian, namely the Bose-Einstein condensate (BEC) polaron in the continuum and the acoustic polaron in a solid. We present ground-state energies of these two system
We explore two complementary modifications of the hybridization-expansion continuous-time Monte Carlo method, aiming at large multi-orbital quantum impurity problems. One idea is to compute the imaginary-time propagation using a matrix product states
We investigate macroscopic tunneling from an elongated quasi 1-d trap, forming a cigar shaped BEC. Using recently developed formalism we get the leading analytical approximation for the right hand side of the potential wall, i.e. outside the trap, an
The ground state properties of spin-polarized deuterium (D$downarrow$) at zero temperature are obtained by means of the diffusion Monte Carlo calculations within the fixed-node approximation. Three D$downarrow$ species have been investigated (D$downa
This Dissertation presents results of a thorough study of ultracold bosonic and fermionic gases in three-dimensional and quasi-one-dimensional systems. Although the analyses are carried out within various theoretical frameworks (Gross-Pitaevskii, Bet