ﻻ يوجد ملخص باللغة العربية
The constraint of neighborhood consistency or local consistency is widely used for robust image matching. In this paper, we focus on learning neighborhood topology consistent descriptors (TCDesc), while former works of learning descriptors, such as HardNet and DSM, only consider point-to-point Euclidean distance among descriptors and totally neglect neighborhood information of descriptors. To learn topology consistent descriptors, first we propose the linear combination weights to depict the topological relationship between center descriptor and its kNN descriptors, where the difference between center descriptor and the linear combination of its kNN descriptors is minimized. Then we propose the global mapping function which maps the local linear combination weights to the global topology vector and define the topology distance of matching descriptors as l1 distance between their topology vectors. Last we employ adaptive weighting strategy to jointly minimize topology distance and Euclidean distance, which automatically adjust the weight or attention of two distances in triplet loss. Our method has the following two advantages: (1) We are the first to consider neighborhood information of descriptors, while former works mainly focus on neighborhood consistency of feature points; (2) Our method can be applied in any former work of learning descriptors by triplet loss. Experimental results verify the generalization of our method: We can improve the performances of both HardNet and DSM on several benchmarks.
In this work, we present a novel method to learn a local cross-domain descriptor for 2D image and 3D point cloud matching. Our proposed method is a dual auto-encoder neural network that maps 2D and 3D input into a shared latent space representation.
This work addresses the problem of learning compact yet discriminative patch descriptors within a deep learning framework. We observe that features extracted by convolutional layers in the pixel domain are largely complementary to features extracted
Constrained image splicing detection and localization (CISDL) is a newly proposed challenging task for image forensics, which investigates two input suspected images and identifies whether one image has suspected regions pasted from the other. In thi
We propose a self-supervised approach to deep surface deformation. Given a pair of shapes, our algorithm directly predicts a parametric transformation from one shape to the other respecting correspondences. Our insight is to use cycle-consistency to
This paper proposes a novel concept to directly match feature descriptors extracted from 2D images with feature descriptors extracted from 3D point clouds. We use this concept to directly localize images in a 3D point cloud. We generate a dataset of