ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Photoionization and Photoheating on Lyman-alpha Forest Properties from Cholla Cosmological Simulations

69   0   0.0 ( 0 )
 نشر من قبل Bruno Villasenor
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bruno Villasenor




اسأل ChatGPT حول البحث

The density and temperature properties of the intergalactic medium (IGM) reflect the heating and ionization history during cosmological structure formation, and are primarily probed by the Lyman-alpha forest of neutral hydrogen absorption features in the observed spectra of background sources (Gunn & Peterson 1965). We present the methodology and initial results from the Cholla IGM Photoheating Simulation (CHIPS) suite performed with the Graphics Process Unit-accelerated Cholla code to study the IGM at high, uniform spatial resolution maintained over large volumes. In this first paper, we examine the IGM structure in CHIPS cosmological simulations that include IGM uniform photoheating and photoionization models where hydrogen reionization completes early (Haardt & Madau 2012) or by redshift z~6 (Puchwein et al. 2019). Comparing with observations of the large- and small-scale Lyman-alpha transmitted flux power spectra P(k) at redshifts 2 <~ z <~ 5.5, the relative agreement of the models depends on scale, with the self-consistent Puchwein et al. (2019) IGM photoheating and photoionization model in good agreement with the flux P(k) at k >~ 0.01 s/km at redshifts 2 <~ z <~ 3.5. On larger scales the P(k) measurements increase in amplitude from z~4.6 to z~2.2 faster than the models, and lie in between the model predictions at 2.2 <~ z <~ 4.6 for k~= 0.002-0.01 s/km. We argue the models could improve by changing the HeII photoheating rate associated with active galactic nuclei to reduce the IGM temperature at z~3. At higher redshifts z>~4.5 the observed flux P(k) amplitude increases at a rate intermediate between the models, and we argue that for models where hydrogen reionization completes late (z~5.5 - 6) resolving this disagreement will require inhomogeneous or patchy reionization. (Abridged)

قيم البحث

اقرأ أيضاً

We present constraints on the masses of extremely light bosons dubbed fuzzy dark matter from Lyman-$alpha$ forest data. Extremely light bosons with a De Broglie wavelength of $sim 1$ kpc have been suggested as dark matter candidates that may resolve some of the current small scale problems of the cold dark matter model. For the first time we use hydrodynamical simulations to model the Lyman-$alpha$ flux power spectrum in these models and compare with the observed flux power spectrum from two different data sets: the XQ-100 and HIRES/MIKE quasar spectra samples. After marginalization over nuisance and physical parameters and with conservative assumptions for the thermal history of the IGM that allow for jumps in the temperature of up to $5000rm,K$, XQ-100 provides a lower limit of 7.1$times 10^{-22}$ eV, HIRES/MIKE returns a stronger limit of 14.3$times 10^{-22}$ eV, while the combination of both data sets results in a limit of 20 $times 10^{-22}$ eV (2$sigma$ C.L.). The limits for the analysis of the combined data sets increases to 37.5$times 10^{-22}$ eV (2$sigma$ C.L.) when a smoother thermal history is assumed where the temperature of the IGM evolves as a power-law in redshift. Light boson masses in the range $1-10 times10^{-22}$ eV are ruled out at high significance by our analysis, casting strong doubts that FDM helps solve the small scale crisis of the cold dark matter models.
Using a suite of hydrodynamical simulations with cold dark matter, baryons, and neutrinos, we present a detailed study of the effect of massive neutrinos on the 1-D and 3-D flux power spectra of the Lyman-$alpha$ (Ly$alpha$) forest. The presence of m assive neutrinos in cosmology induces a scale- and time-dependent suppression of structure formation that is strongest on small scales. Measuring this suppression is a key method for inferring neutrino masses from cosmological data, and is one of the main goals of ongoing and future surveys like eBOSS, DES, LSST, Euclid or DESI. The clustering in the Ly$alpha$ forest traces the quasi-linear power at late times and on small scales. In combination with observations of the cosmic microwave background, the forest therefore provides some of the tightest constraints on the sum of the neutrino masses. However there is a well-known degeneracy between $Sigma m_{ u}$ and the amplitude of perturbations in the linear matter power spectrum. We study the corresponding degeneracy in the 1-D flux power spectrum of the Ly$alpha$ forest, and for the first time also study this degeneracy in the 3-D flux power spectrum. We show that the non-linear effects of massive neutrinos on the Ly$alpha$ forest, beyond the effect of linear power amplitude suppression, are negligible, and this degeneracy persists in the Ly$alpha$ forest observables to a high precision. We discuss the implications of this degeneracy for choosing parametrisations of the Ly$alpha$ forest for cosmological analysis.
Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution con straint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present Iteratively Matched Statistics (IMS), a novel method to accurately model the Lyman-alpha forest with collisionless N-body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) and the power spectrum of the real-space Lyman-alpha forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N-body simulation, which we construct from the matter density. We demonstrate that our method can perfectly reproduce line-of-sight observables, such as the PDF and power spectrum, and accurately reproduce the 3D flux power spectrum (5-20%). We quantify the performance of the commonly used Gaussian smoothing technique and show that it has significantly lower accuracy (20-80%), especially for N-body simulations with achievable mean inter-particle separations in large-volume simulations. In addition, we show that IMS produces reasonable and smooth spectra, making it a powerful tool for modeling the IGM in large cosmological volumes and for producing realistic mock skies for Lyman-alpha forest surveys.
We use the probability distribution function (PDF) of the lya forest flux at z=2-3, measured from high-resolution UVES/VLT data, and hydrodynamical simulations to obtain constraints on cosmological parameters and the thermal state of the intergalacti c medium (IGM) at z 2-3. The observed flux PDF at z=3 alone results in constraints on cosmological parameters in good agreement with those obtained from the WMAP data, albeit with about a factor two larger errors. The observed flux PDF is best fit with simulations with a matter fluctuation amplitude of sigma_8=0.8-0.85 pm 0.07 and an inverted IGM temperature-density relation (gamma ~ 0.5-0.75), consistent with our previous results obtained using a simpler analysis. These results appear to be robust to uncertainties in the quasar (QSO) continuum placement. We further discuss constraints obtained by a combined analysis of the high-resolution flux PDF and the power spectrum measured from the Sloan Digital Sky Survey (SDSS) lya forest data. The joint analysis confirms the suggestion of an inverted temperature-density relation, but prefers somewhat higher values (sigma_8 ~ 0.9) of the matter fluctuation amplitude than the WMAP data and the best fit to the flux PDF alone. The joint analysis of the flux PDF and power spectrum (as well as an analysis of the power spectrum data alone) prefers rather large values for the temperature of the IGM, perhaps suggesting that we have identified a not yet accounted for systematic error in the SDSS flux power spectrum data or that the standard model describing the thermal state of the IGM at z ~ 2-3 is incomplete.
In La Plante et al. (2017), we presented a new suite of hydrodynamic simulations with the aim of accurately capturing the process of helium II reionization. In this paper, we discuss the observational signatures present in the He II Ly$alpha$ forest. We show that the effective optical depth of the volume $tau_mathrm{eff}$ is not sufficient for capturing the ionization state of helium II, due to the large variance inherent in sightlines. However, the He II flux PDF can be used to determine the timing of helium II reionization. The amplitude of the one-dimensional flux power spectrum can also determine the ionization state of helium II. We show that even given the currently limited number of observations ($sim$50 sightlines), measurements of the flux PDF can yield information about helium II reionization. Further, measurements using the one-dimensional power spectrum can provide clear indications of the timing of reionization, as well as the relative bias of sources of ionizing radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا