ﻻ يوجد ملخص باللغة العربية
In this paper, we prove that slice polyanalytic functions on quaternions can be considered as solutions of a power of some special global operator with nonconstant coefficients as it happens in the case of slice hyperholomorphic functions. We investigate also an extension version of the Fueter mapping theorem in this polyanalytic setting. In particular, we show that under axially symmetric conditions it is always possible to construct Fueter regular and poly-Fueter regular functions through slice polyanalytic ones using what we call the poly-Fueter mappings. We study also some integral representations of these results on the quaternionic unit ball.
In this paper, we introduce the quaternionic slice polyanalytic functions and we prove some of their properties. Then, we apply the obtained results to begin the study of the quaternionic Fock and Bergman spaces in this new setting. In particular, we
This paper deals with some special integral transforms of Bargmann-Fock type in the setting of quaternionic valued slice hyperholomorphic and Cauchy-Fueter regular functions. The construction is based on the well-known Fueter mapping theorem. In part
The aim of this paper is to prove that a large class of quaternionic slice regular functions result to be (ramified) covering maps. By means of the topological implications of this fact and by providing further topological structures, we are able to
In this paper, we study the (possible) solutions of the equation $exp_{*}(f)=g$, where $g$ is a slice regular never vanishing function on a circular domain of the quaternions $mathbb{H}$ and $exp_{*}$ is the natural generalization of the usual expone
The sharp growth and distortion theorems are established for slice monogenic extensions of univalent functions on the unit disc $mathbb Dsubset mathbb C$ in the setting of Clifford algebras, based on a new convex combination identity. The analogous r