ﻻ يوجد ملخص باللغة العربية
In principle, there is no obstacle to gapping fermions preserving any global symmetry that does not suffer a t Hooft anomaly. In practice, preserving a symmetry that is realised on fermions in a chiral manner necessitates some dynamics beyond simple quadratic mass terms. We show how this can be achieved using familiar results about supersymmetric gauge theories and, in particular, the phenomenon of confinement without chiral symmetry breaking. We present simple models that gap fermions while preserving a symmetry group under which they transform in chiral representations. For example, we show how to gap a collection of 4d fermions that carry the quantum numbers of one generation of the Standard Model, but without breaking electroweak symmetry. We further show how to gap fermions in groups of 16 while preserving certain discrete symmetries that exhibit a mod 16 anomaly.
We study a holographic model where translations are both spontaneously and explicitly broken, leading to the presence of (pseudo)-phonons in the spectrum. The weak explicit breaking is due to two independent mechanisms: a small source for the condens
Axial anomaly and nesting is elucidated in the context of the inhomogeneous chiral phase. Using the Gross-Neveu models in 1+1 dimensions, we shall discuss axial anomaly and nesting from two different points of view: one is homogeneous chiral transiti
We analyze the combined effects of hydrodynamic fluctuations and chiral magnetic effect (CME) for a chiral medium in the presence of a background magnetic field. Based on the recently developed non-equilibrium effective field theory, we show fluctuat
We study generalized discrete symmetries of quantum field theories in 1+1D generated by topological defect lines with no inverse. In particular, we describe t Hooft anomalies and classify gapped phases stabilized by these symmetries, including new 1+
Real Clifford algebras for arbitrary number of space and time dimensions as well as their representations in terms of spinors are reviewed and discussed. The Clifford algebras are classified in terms of isomorphic matrix algebras of real, complex or