ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying the effect of oxygen on micro-mechanical properties of a near-alpha titanium alloy

67   0   0.0 ( 0 )
 نشر من قبل Hazel Gardner
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atom probe tomography (APT), electron probe microanalysis (EPMA) and nanoindentation were used to characterise the oxygen-rich layer on an in-service jet engine compressor disc, manufactured from the titanium alloy TIMETAL 834. Oxygen ingress was quantified and related to changes in mechanical properties through nanoindentation studies. The relationship between oxygen concentration, microstructure, crystal orientation and hardness has been explored through correlative hardness mapping, EPMA and electron backscatter diffraction (EBSD). The role of microstructure on oxygen ingress has been studied and oxygen ingress along a potential alpha/ beta interface was directly observed on the nanoscale using APT.

قيم البحث

اقرأ أيضاً

The alpha/beta interface in Ti-6Al-2Sn-4Zr-6Mo (Ti-6246) is investigated via centre of symmetry analysis, both as-grown and after 10% cold work. Semi-coherent interface steps are observed at a spacing of 4.5 +/-1.13 atoms in the as-grown condition, i n good agreement with theory prediction (4.37 atoms). Lattice accommodation is observed, with elongation along [-1 2 -1 0]alpha and contraction along [1 0 -1 0]alpha . Deformed alpha exhibited larger, less coherent steps with slip bands lying in {110}beta. This indicates dislocation pile-up at the grain boundary, a precursor to globularisation, offering insight into the effect of deformation processing on the interface, which is important for titanium alloy processing route design.
The effect of oxygen adsorption on the local structure and electronic properties of monolayer graphene grown on SiC(0001) has been studied by means of Low Energy Electron Microscopy (LEEM), microprobe Low Energy Electron Diffraction (muLEED) and micr oprobe Angle Resolved Photoemission (muARPES). We show that the buffer layer of epitaxial graphene on SiC(0001) is partially decoupled after oxidation. The monitoring of the oxidation process demonstrates that the oxygen saturates the Si dangling bonds, breaks some Si-C bonds at the interface and intercalates the graphene layer. Accurate control over the oxidation parameters enables us to tune the charge density modulation in the layer.
Experimental investigation as well as theoretical calculations, of the Fe-partial phonon density-of-states (DOS) for nominally Fe_52.5Cr_47.5 alloy having (a) alpha- and (b) sigma-phase structure were carried out. The former at sector 3-ID of the Adv anced Photon Source, using the method of nuclear resonant inelastic X-ray scattering, and the latter with the direct method [K. Parlinski et al., Phys. Rev. Lett. {78, 4063 (1997)]. The characteristic features of phonon DOS, which differentiate one phase from the other, were revealed and successfully reproduced by the theory. Various data pertinent to the dynamics such as Lamb-Mossbauer factor, f, kinetic energy per atom, E_k, and the mean force constant, D, were directly derived from the experiment and the theoretical calculations, while vibrational specific heat at constant volume, C_V, and vibrational entropy, S were calculated using the Fe-partial DOS. Using the values of f and C_V, we determined values for Debye temperatures, T_D. An excellent agreement for some quantities derived from experiment and first-principles theory, like C_V and quite good one for others like D and S was obtained.
Many emerging applications in microscale engineering rely on the fabrication of three-dimensional architectures in inorganic materials. Small-scale additive manufacturing (AM) aspires to provide flexible and facile access to these geometries. Yet, th e synthesis of device-grade inorganic materials is still a key challenge towards the implementation of AM in microfabrication. Here, we present a comprehensive overview of the microstructural and mechanical properties of metals fabricated by most state-of-the-art AM methods that offer a spatial resolution $leq$10$mu$m. Standardized sets of samples were studied by cross-sectional electron microscopy, nanoindentation and microcompression. We show that current microscale AM techniques synthesize metals with a wide range of microstructures and elastic and plastic properties, including materials of dense and crystalline microstructure with excellent mechanical properties that compare well to those of thin-film nanocrystalline materials. The large variation in materials performance can be related to the individual microstructure, which in turn is coupled to the various physico-chemical principles exploited by the different printing methods. The study provides practical guidelines for users of small-scale additive methods and establishes a baseline for the future optimization of the properties of printed metallic objects $-$ a significant step towards the potential establishment of AM techniques in microfabrication.
The mechanism of AgCl-induced stress corrosion cracking of Ti-6246 was examined at SI{500}{megapascal} and SI{380}{celsius} for SI{24}{hour} exposures. SEM and STEM-EDX examination of a FIB-sectioned blister and crack showed that metallic Ag was form ed and migrated along the crack. TEM analysis also revealed the presence of ce{SnO2} and ce{Al2O3} corrosion products mixed into ce{TiO2}. The fracture surface has a transgranular nature with a brittle appearance in the primary $alpha$ phase. Long, straight and non-interacting dislocations were observed in a cleavage-fractured primary $alpha$ grain, with basal and pyramidal traces. This is consistent with a dislocation emission view of the the cracking mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا