ﻻ يوجد ملخص باللغة العربية
We investigate a new scenario of the two Higgs doublet model, where the current experimental data for the electroweak rho parameter and those for the Higgs boson couplings can be simultaneously explained. In this scenario, the two Higgs doublet model is supposed to be a low energy effective theory up to a high energy scale $Lambda$, above which a fundamental theory should appear. It is assumed that the Higgs potential respects a global symmetry at $Lambda$ (the twisted custodial symmetry), which is to be given as a consequence of the global symmetry structure of the fundamental theory above $Lambda$. By the analysis using one-loop renormalization group equations, the above experimental data can be explained in a natural way even when the masses of the extra Higgs bosons are near the electroweak scale. We also discuss the predictions on the mass spectrum of the additional Higgs bosons and also those on coupling constants of the standard-model-like Higgs boson, which make it possible to test this scenario at current and future collider experiments.
We study the off-shell production of the Higgs boson at the LHC to probe Higgs physics at higher energy scales utilizing the process $g g rightarrow h^{*} rightarrow ZZ$. We focus on the energy scale dependence of the off-shell Higgs propagation, and
We discuss the recent results on the muon anomalous magnetic moment in the context of new physics models with light scalars. We propose a model in which the one-loop contributions to g-2 of a scalar and a pseudoscalar naturally cancel in the massless
We suggest that the exclusive Higgs + light (or b)-jet production at the LHC, $pp to h+j(j_b)$, is a rather sensitive probe of the light-quarks Yukawa couplings and of other forms of new physics (NP) in the Higgs-gluon $hgg$ and quark-gluon $qqg$ int
We calculate 1-loop radiative corrections to the $hZZ$ and $hWW$ couplings in models with next--to--simplest Higgs sectors satisfying the electroweak $rho$ parameter equal to 1 at tree level: the Higgs singlet model, the two-Higgs doublet models, and
The $h(125)$ boson, discovered only in 2012, is lower than the top quark in mass, hence $t to ch$ search commenced immediately thereafter, with current limits at the per mille level and improving. As the $t to ch$ rate vanishes with the $h$-$H$ mixin