ﻻ يوجد ملخص باللغة العربية
We consider the proportion of generalized visible lattice points in the plane visited by random walkers. Our work concerns the visible lattice points in random walks in three aspects: (1) generalized visibility along curves; (2) one random walker visible from multiple watchpoints; (3) simultaneous visibility of multiple random walkers. Moreover, we found new phenomenon in the case of multiple random walkers: for visibility along a large class of curves and for any number of random walkers, the proportion of steps at which all random walkers are visible simultaneously is almost surely larger than a positive constant.
This paper concerns the number of lattice points in the plane which are visible along certain curves to all elements in some set S of lattice points simultaneously. By proposing the concept of level of visibility, we are able to analyze more carefull
Let $a,n in mathbb{Z}^+$, with $a<n$ and $gcd(a,n)=1$. Let $P_{a,n}$ denote the lattice parallelogram spanned by $(1,0)$ and $(a,n)$, that is, $$P_{a,n} = left{ t_1(1,0)+ t_2(a,n) , : , 0leq t_1,t_2 leq 1 right}, $$ and let $$V(a,n) = # textrm{ of vi
We apply the power-of-two-choices paradigm to a random walk on a graph: rather than moving to a uniform random neighbour at each step, a controller is allowed to choose from two independent uniform random neighbours. We prove that this allows the con
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko
We propose a formula for the enumeration of closed lattice random walks of length $n$ enclosing a given algebraic area. The information is contained in the Kreft coefficients which encode, in the commensurate case, the Hofstadter secular equation for