ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictions of Subjective Ratings and Spoofing Assessments of Voice Conversion Challenge 2020 Submissions

107   0   0.0 ( 0 )
 نشر من قبل Rohan Kumar Das
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The Voice Conversion Challenge 2020 is the third edition under its flagship that promotes intra-lingual semiparallel and cross-lingual voice conversion (VC). While the primary evaluation of the challenge submissions was done through crowd-sourced listening tests, we also performed an objective assessment of the submitted systems. The aim of the objective assessment is to provide complementary performance analysis that may be more beneficial than the time-consuming listening tests. In this study, we examined five types of objective assessments using automatic speaker verification (ASV), neural speaker embeddings, spoofing countermeasures, predicted mean opinion scores (MOS), and automatic speech recognition (ASR). Each of these objective measures assesses the VC output along different aspects. We observed that the correlations of these objective assessments with the subjective results were high for ASV, neural speaker embedding, and ASR, which makes them more influential for predicting subjective test results. In addition, we performed spoofing assessments on the submitted systems and identified some of the VC methods showing a potentially high security risk.



قيم البحث

اقرأ أيضاً

The voice conversion challenge is a bi-annual scientific event held to compare and understand different voice conversion (VC) systems built on a common dataset. In 2020, we organized the third edition of the challenge and constructed and distributed a new database for two tasks, intra-lingual semi-parallel and cross-lingual VC. After a two-month challenge period, we received 33 submissions, including 3 baselines built on the database. From the results of crowd-sourced listening tests, we observed that VC methods have progressed rapidly thanks to advanced deep learning methods. In particular, speaker similarity scores of several systems turned out to be as high as target speakers in the intra-lingual semi-parallel VC task. However, we confirmed that none of them have achieved human-level naturalness yet for the same task. The cross-lingual conversion task is, as expected, a more difficult task, and the overall naturalness and similarity scores were lower than those for the intra-lingual conversion task. However, we observed encouraging results, and the MOS scores of the best systems were higher than 4.0. We also show a few additional analysis results to aid in understanding cross-lingual VC better.
This paper presents the details of the Audio-Visual Scene Classification task in the DCASE 2021 Challenge (Task 1 Subtask B). The task is concerned with classification using audio and video modalities, using a dataset of synchronized recordings. This task has attracted 43 submissions from 13 different teams around the world. Among all submissions, more than half of the submitted systems have better performance than the baseline. The common techniques among the top systems are the usage of large pretrained models such as ResNet or EfficientNet which are trained for the task-specific problem. Fine-tuning, transfer learning, and data augmentation techniques are also employed to boost the performance. More importantly, multi-modal methods using both audio and video are employed by all the top 5 teams. The best system among all achieved a logloss of 0.195 and accuracy of 93.8%, compared to the baseline system with logloss of 0.662 and accuracy of 77.1%.
110 - Junxiao Xue , Hao Zhou , Yabo Wang 2021
Speaker verification systems have been used in many production scenarios in recent years. Unfortunately, they are still highly prone to different kinds of spoofing attacks such as voice conversion and speech synthesis, etc. In this paper, we propose a new method base on physiological-physical feature fusion to deal with voice spoofing attacks. This method involves feature extraction, a densely connected convolutional neural network with squeeze and excitation block (SE-DenseNet), multi-scale residual neural network with squeeze and excitation block (SE-Res2Net) and feature fusion strategies. We first pre-trained a convolutional neural network using the speakers voice and face in the video as surveillance signals. It can extract physiological features from speech. Then we use SE-DenseNet and SE-Res2Net to extract physical features. Such a densely connection pattern has high parameter efficiency and squeeze and excitation block can enhance the transmission of the feature. Finally, we integrate the two features into the SE-Densenet to identify the spoofing attacks. Experimental results on the ASVspoof 2019 data set show that our model is effective for voice spoofing detection. In the logical access scenario, our model improves the tandem decision cost function (t-DCF) and equal error rate (EER) scores by 4% and 7%, respectively, compared with other methods. In the physical access scenario, our model improved t-DCF and EER scores by 8% and 10%, respectively.
The INTERSPEECH 2020 Deep Noise Suppression (DNS) Challenge is intended to promote collaborative research in real-time single-channel Speech Enhancement aimed to maximize the subjective (perceptual) quality of the enhanced speech. A typical approach to evaluate the noise suppression methods is to use objective metrics on the test set obtained by splitting the original dataset. While the performance is good on the synthetic test set, often the model performance degrades significantly on real recordings. Also, most of the conventional objective metrics do not correlate well with subjective tests and lab subjective tests are not scalable for a large test set. In this challenge, we open-sourced a large clean speech and noise corpus for training the noise suppression models and a representative test set to real-world scenarios consisting of both synthetic and real recordings. We also open-sourced an online subjective test framework based on ITU-T P.808 for researchers to reliably test their developments. We evaluated the results using P.808 on a blind test set. The results and the key learnings from the challenge are discussed. The datasets and scripts can be found here for quick access https://github.com/microsoft/DNS-Challenge.
This paper describes the Academia Sinica systems for the two tasks of Voice Conversion Challenge 2020, namely voice conversion within the same language (Task 1) and cross-lingual voice conversion (Task 2). For both tasks, we followed the cascaded ASR +TTS structure, using phonetic tokens as the TTS input instead of the text or characters. For Task 1, we used the international phonetic alphabet (IPA) as the input of the TTS model. For Task 2, we used unsupervised phonetic symbols extracted by the vector-quantized variational autoencoder (VQVAE). In the evaluation, the listening test showed that our systems performed well in the VCC2020 challenge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا