ﻻ يوجد ملخص باللغة العربية
We analyse the mechanisms ruling galactic disc heating through the dynamics of space velocities $U$, $V$ and $W$, extracted from the Geneva-Copenhagen catalogue. To do this, we use a model based on non-extensive statistical mechanics, where we derive the probability distribution functions that quantify the non-Gaussian effects. Furthermore, we find that the deviation $q-1$ at a given stellar age follows non-random behaviour. As a result, the $q$-index behaviour indicates that the vertical component $W$, perpendicular to the Galactic plane, does not ``heat up at random, which is in disagreement with previous works that attributed the evolution of $W$ to randomness. Finally, our results bring a new perspective to this matter and open the way for studying Galactic kinematic components through the eyes of more robust statistical models that consider non-Gaussian effects.
We present the analysis of a suite of simulations run with different particle-and grid-based cosmological hydrodynamical codes and compare them with observational data of the Milky Way. This is the first study to make comparisons of properties of gal
Analyses of data from spectroscopic and astrometric surveys have led to conflicting results concerning the vertical characteristics of the Milky Way. Ages are often used to provide clarity, but typical uncertainties of $>$ 40,% restrict the validity
The vast majority of Milky Way stellar halo stars were likely accreted from a small number ($lesssim$3) of relatively large dwarf galaxy accretion events. However, the timing of these events is poorly constrained, relying predominantly on indirect dy
We investigate the star formation activity in the molecular complex associated with the Galactic HII region Sh2-90, using radio-continuum maps obtained at 1280 MHz and 610 MHz, Herschel Hi-GAL observations at 70 -- 500 microns, and deep near-infrared
We present a kinematical study of 314 RR~Lyrae stars in the solar neighbourhood using the publicly available photometric, spectroscopic, and {it Gaia} DR2 astrometric data to explore their distribution in the Milky Way. We report an overdensity of 22