ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-extensive processes associated with heating of the Galactic disc

57   0   0.0 ( 0 )
 نشر من قبل Daniel Brito de Freitas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the mechanisms ruling galactic disc heating through the dynamics of space velocities $U$, $V$ and $W$, extracted from the Geneva-Copenhagen catalogue. To do this, we use a model based on non-extensive statistical mechanics, where we derive the probability distribution functions that quantify the non-Gaussian effects. Furthermore, we find that the deviation $q-1$ at a given stellar age follows non-random behaviour. As a result, the $q$-index behaviour indicates that the vertical component $W$, perpendicular to the Galactic plane, does not ``heat up at random, which is in disagreement with previous works that attributed the evolution of $W$ to randomness. Finally, our results bring a new perspective to this matter and open the way for studying Galactic kinematic components through the eyes of more robust statistical models that consider non-Gaussian effects.

قيم البحث

اقرأ أيضاً

We present the analysis of a suite of simulations run with different particle-and grid-based cosmological hydrodynamical codes and compare them with observational data of the Milky Way. This is the first study to make comparisons of properties of gal axies simulated with particle and grid-based codes. Our analysis indicates that there is broad agreement between these different modelling techniques. We study the velocity dispersion - age relation for disc stars at z=0 and find that four of the simulations are more consistent with observations by Holmberg et al. (2008) in which the stellar disc appears to undergo continual/secular heating. Two other simulations are in better agreement with the Quillen & Garnett (2001) observations that suggest a saturation in the heating profile for young stars in the disc. None of the simulations have thin discs as old as that of the Milky Way. We also analyse the kinematics of disc stars at the time of their birth for different epochs in the galaxies evolution and find that in some simulations old stars are born cold within the disc and are subsequently heated, while other simulations possess old stellar populations which are born relatively hot. The models which are in better agreement with observations of the Milky Ways stellar disc undergo significantly lower minor-merger/assembly activity after the last major merger - i.e. once the disc has formed. All of the simulations are significantly hotter than the Milky Way disc; on top of the effects of mergers, we find a floor in the dispersion that is related to the underlying treatment of the heating and cooling of the interstellar medium, and the low density threshold which such codes use for star formation. This finding has important implications for all studies of disc heating that use hydrodynamical codes.
Analyses of data from spectroscopic and astrometric surveys have led to conflicting results concerning the vertical characteristics of the Milky Way. Ages are often used to provide clarity, but typical uncertainties of $>$ 40,% restrict the validity of the inferences made. Using the textit{Kepler} APOKASC sample for context, we explore the global population trends of two K2 campaign fields (3 and 6), which extend further vertically out of the Galactic plane than APOKASC. We analyse the properties of red giant stars utilising three asteroseismic data analysis methods to cross-check and validate detections. The Bayesian inference tool PARAM is used to determine the stellar masses, radii and ages. Evidence of a pronounced red giant branch bump and an [$alpha$/Fe] dependence on the position of the red clump is observed from the radii distribution of the K2 fields. Two peaks in the age distribution centred at $sim$5 and and $sim$12 Gyr are found using a sample with $sigma_{rm{age}}$ $<$ 35,%. In a comparison with textit{Kepler}, we find the older peak to be more prominent for K2. This age bimodality is also observed based on a chemical selection of low- ($leq$ 0.1) and high- ($>$ 0.1) [$alpha$/Fe] stars. As a function of vertical distance from the Galactic mid-plane ($|Z|$), the age distribution shows a transition from a young to old stellar population with increasing $|Z|$ for the K2 fields. Further coverage of campaign targets with high resolution spectroscopy is required to increase the yield of precise ages achievable with asteroseismology.
The vast majority of Milky Way stellar halo stars were likely accreted from a small number ($lesssim$3) of relatively large dwarf galaxy accretion events. However, the timing of these events is poorly constrained, relying predominantly on indirect dy namical mixing arguments or imprecise age measurements of stars associated with debris structures. Here, we aim to infer robust stellar ages for stars associated with galactic substructures to more directly constrain the merger history of the Galaxy. By combining kinematic, asteroseismic, and spectroscopic data where available, we infer stellar ages for a sample of 10 red giant stars that were kinematically selected to be associated with the stellar halo, a subset of which are associated with the Gaia-Enceladus-Sausage halo substructure, and compare their ages to 3 red giant stars in the Galactic disk. Despite systematic differences in both absolute and relative ages determined by this work, age rankings of stars in this sample are robust. Passing the same observable inputs to multiple stellar age determination packages, we measure a weighted average age for the Gaia-Enceladus-Sausage stars in our sample of 8 $pm$ 3 (stat.) $pm$ 1 (sys.) Gyr. We also determine hierarchical ages for the populations of Gaia-Enceladus-Sausage, in situ halo and disk stars, finding a Gaia-Enceladus-Sausage population age of 8.0$^{+3.2}_{-2.3}$ Gyr. Although we cannot distinguish hierarchical population ages of halo or disk structures with our limited data and sample of stars, this framework should allow distinct characterization of Galactic substructures using larger stellar samples and additional data available in the near future.
We investigate the star formation activity in the molecular complex associated with the Galactic HII region Sh2-90, using radio-continuum maps obtained at 1280 MHz and 610 MHz, Herschel Hi-GAL observations at 70 -- 500 microns, and deep near-infrared observation at JHK bands, along with Spitzer observations. Sh2-90 presents a bubble morphology in the mid-IR (size ~ 0.9 pc x 1.6 pc). Radio observations suggest it is an evolved HII region with an electron density ~ 144 cm^-3, emission measure ~ 6.7 x 10^4 cm^-6 pc and a ionized mass ~ 55 Msun. From Hi-GAL observations it is found that the HII region is part of an elongated extended molecular cloud (size ~ 5.6 pc x 9.7 pc, H_2 column density >= 3 x 10^21 cm^-2 and dust temperature 18 -- 27 K) of total mass >= 1 x 10^4 Msun. We identify the ionizing cluster of Sh2-90, the main exciting star being an O8--O9 V star. Five cold dust clumps (mass ~ 8 -- 95 Msun), four mid-IR blobs around B stars, and a compact HII region are found at the edge of the bubble.The velocity information derived from CO (J=3-2) data cubes suggests that most of them are associated with the Sh2-90 region. 129 YSOs are identified (Class I, Class II, and near-IR excess sources). The majority of the YSOs are low mass (<= 3 Msun) sources and they are distributed mostly in the regions of high column density. Four candidate Class 0/I MYSOs have been found; they will possibly evolve to stars of mass >= 15 Msun. We suggest multi-generation star formation is present in the complex. From the evidences of interaction, the time scales involved and the evolutionary status of stellar/protostellar sources, we argue that the star formation at the immediate border/edges of Sh2-90 might have been triggered by the expanding HII region. However, several young sources in this complex are probably formed by some other processes.
We present a kinematical study of 314 RR~Lyrae stars in the solar neighbourhood using the publicly available photometric, spectroscopic, and {it Gaia} DR2 astrometric data to explore their distribution in the Milky Way. We report an overdensity of 22 RR~Lyrae stars in the solar neighbourhood at a pericenter distance of between 5--9,kpc from the Galactic center. Their orbital parameters and their chemistry indicate that these 22 variables share the kinematics and the [Fe/H] values of the Galactic disc, with an average metallicity and tangential velocity of [Fe/H]=$-0.60$,dex and $v_{theta} = 241$,km,s$^{-1}$, respectively. From the distribution of the Galactocentric spherical velocity components, we find that these 22 disc-like RR~Lyrae variables are not consistent with the {it Gaia} Sausage ({it Gaia}-Enceladus), unlike almost half of the local RR~Lyrae stars. Chemical information from the literature shows that the majority of the selected pericenter peak RR~Lyrae variables are $alpha$-poor, a property shared by typically much younger stars in the thin disc. Using the available photometry we rule out a possible misclassification with the known classical and anomalous Cepheids. The similar kinematic, chemical, and pulsation properties of these disc RR~Lyrae stars suggest they share a common origin. In contrast, we find the RR~Lyrae stars associated with the {it Gaia}-Enceladus based on their kinematics and chemical composition show a considerable metallicity spread in the old population ($sim$~1,dex).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا