ترغب بنشر مسار تعليمي؟ اضغط هنا

QCD vacuum and baryon masses

121   0   0.0 ( 0 )
 نشر من قبل Youngman Kim
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel approach to study a possible role of the quantum chromodynamics vacuum in nuclear and hadron physics. Our proposal is essentially to introduce a candidate of the QCD vacuum through a gluon background field and calculate physical quantities as a function of the background field. In the present work we adopt the Copenhagen (spaghetti) vacuum. As a first application of the our approach, we investigate the effects of the Copenhagen vacuum on the ground-state baryon masses. We find that the baryon mass does depend on a parameter that characterizes the Copenhagen vacuum and satisfies the Gell-Mann-Okubo mass relation for the baryon octet. We also estimate the value of the parameter and discuss the chiral invariant nucleon mass in our framework.



قيم البحث

اقرأ أيضاً

We discuss a general diagrammatic description of n-point functions in the QCD instanton vacuum that resums planar diagrams, enforces gauge invariance and spontaneously broken chiral symmetry. We use these diagrammatic rules to derive the pion and kao n quasi-parton amplitude and distribution functions at leading order in the instanton packing fraction for large but finite momentum. The instanton and anti-instanton zero modes and non-zero modes are found to contribute to the quasi-distributions, but the latter are shown to drop out in the large momentum limit. The pertinent pion and kaon parton distribution amplitudes and functions are made explicit at the low renormalization scale fixed by the inverse instanton size. Assuming that factorization holds, the pion parton distributions are evolved to higher renormalization scales with one-loop DGLAP and compared to existing data.
The mass spectrum of the positive parity [56,2^+] baryons is studied in the 1/Nc expansion up to and including O(1/Nc) effects with SU(3) symmetry breaking implemented to first order. A total of eighteen mass relations result, several of which are te sted with the available data. The breaking of spin-flavor symmetry is dominated by the hyperfine interactions, while spin-orbit effects are found to be small.
66 - Lipei Du 2021
Fireballs created in relativistic heavy-ion collisions at different beam energies have been argued to follow different trajectories in the QCD phase diagram in which the QCD critical point serves as a landmark. Using a (1+1)-dimensional model setting with transverse homogeneity, we study the complexities introduced by the fact that the evolution history of each fireball cannot be characterized by a single trajectory but rather covers an entire swath of the phase diagram, with the finally emitted hadron spectra integrating over contributions from many different trajectories. Studying the phase diagram trajectories of fluid cells at different space-time rapidities, we explore how baryon diffusion shuffles them around, and how they are affected by critical dynamics near the QCD critical point. We find a striking insensitivity of baryon diffusion to critical effects. Its origins are analyzed and possible implications discussed.
The ensemble of Euclidean gluon field configurations represented by the domain wall network is considered. A single domain wall is given by the sine-Gordon kink for the angle between chromomagnetic and chromoelectric components of the gauge field. Th e domain wall separates the regions with self-dual and anti-self-dual fields. The network of the domain wall defects is introduced as a combination of multiplicative and additive superpositions of kinks. The character of the spectrum and eigenmodes of color-charged fluctuations in the presence of the domain wall network is discussed. The concept of the confinement-deconfinement transition in terms of the ensemble of domain wall networks is outlined. Conditions for the formation of thick domain wall junction during heavy ion collisions are discussed, and the spectrum of color charged quasiparticles inside the trap is evaluated. An important observation is the existence of the critical size $L_c$ of the trap stable against gluon tachyonic modes, which means that deconfinement can occur only in a finite region of space-time in principle. The size $L_c$ is related to the value of gluon condensate $langle g^2F^2rangle$.
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of spatially-extended hadron operators are used. The need for multi-hadron operators in addition to single-hadron operators is emphasized, necess itating the use of a new stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing. A new glueball operator is tested, and computing the mixing of this glueball operator with a quark-antiquark operator and multiple two-pion operators is shown to be feasible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا