ترغب بنشر مسار تعليمي؟ اضغط هنا

Cointegrating Polynomial Regressions with Power Law Trends: A New Angle on the Environmental Kuznets Curve

74   0   0.0 ( 0 )
 نشر من قبل Yicong Lin
 تاريخ النشر 2020
  مجال البحث اقتصاد
والبحث باللغة English




اسأل ChatGPT حول البحث

The Environment Kuznets Curve (EKC) predicts an inverted U-shaped relationship between economic growth and environmental pollution. Current analyses frequently employ models which restrict the nonlinearities in the data to be explained by the economic growth variable only. We propose a Generalized Cointegrating Polynomial Regression (GCPR) with flexible time trends to proxy time effects such as technological progress and/or environmental awareness. More specifically, a GCPR includes flexible powers of deterministic trends and integer powers of stochastic trends. We estimate the GCPR by nonlinear least squares and derive its asymptotic distribution. Endogeneity of the regressors can introduce nuisance parameters into this limiting distribution but a simulated approach nevertheless enables us to conduct valid inference. Moreover, a subsampling KPSS test can be used to check the stationarity of the errors. A comprehensive simulation study shows good performance of the simulated inference approach and the subsampling KPSS test. We illustrate the GCPR approach on a dataset of 18 industrialised countries containing GDP and CO2 emissions. We conclude that: (1) the evidence for an EKC is significantly reduced when a nonlinear time trend is included, and (2) a linear cointegrating relation between GDP and CO2 around a power law trend also provides an accurate description of the data.



قيم البحث

اقرأ أيضاً

We develop monitoring procedures for cointegrating regressions, testing the null of no breaks against the alternatives that there is either a change in the slope, or a change to non-cointegration. After observing the regression for a calibration samp le m, we study a CUSUM-type statistic to detect the presence of change during a monitoring horizon m+1,...,T. Our procedures use a class of boundary functions which depend on a parameter whose value affects the delay in detecting the possible break. Technically, these procedures are based on almost sure limiting theorems whose derivation is not straightforward. We therefore define a monitoring function which - at every point in time - diverges to infinity under the null, and drifts to zero under alternatives. We cast this sequence in a randomised procedure to construct an i.i.d. sequence, which we then employ to define the detector function. Our monitoring procedure rejects the null of no break (when correct) with a small probability, whilst it rejects with probability one over the monitoring horizon in the presence of breaks.
153 - Yicong Lin , Hanno Reuvers 2019
This paper develops the asymptotic theory of a Fully Modified Generalized Least Squares estimator for multivariate cointegrating polynomial regressions. Such regressions allow for deterministic trends, stochastic trends and integer powers of stochast ic trends to enter the cointegrating relations. Our fully modified estimator incorporates: (1) the direct estimation of the inverse autocovariance matrix of the multidimensional errors, and (2) second order bias corrections. The resulting estimator has the intuitive interpretation of applying a weighted least squares objective function to filtered data series. Moreover, the required second order bias corrections are convenient byproducts of our approach and lead to standard asymptotic inference. We also study several multivariate KPSS-type of tests for the null of cointegration. A comprehensive simulation study shows good performance of the FM-GLS estimator and the related tests. As a practical illustration, we reinvestigate the Environmental Kuznets Curve (EKC) hypothesis for six early industrialized countries as in Wagner et al. (2020).
68 - Yufei Yi , Matey Neykov 2021
In this paper, we propose an abstract procedure for debiasing constrained or regularized potentially high-dimensional linear models. It is elementary to show that the proposed procedure can produce $frac{1}{sqrt{n}}$-confidence intervals for individu al coordinates (or even bounded contrasts) in models with unknown covariance, provided that the covariance has bounded spectrum. While the proof of the statistical guarantees of our procedure is simple, its implementation requires more care due to the complexity of the optimization programs we need to solve. We spend the bulk of this paper giving examples in which the proposed algorithm can be implemented in practice. One fairly general class of instances which are amenable to applications of our procedure include convex constrained least squares. We are able to translate the procedure to an abstract algorithm over this class of models, and we give concrete examples where efficient polynomial time methods for debiasing exist. Those include the constrained version of LASSO, regression under monotone constraints, regression with positive monotone constraints and non-negative least squares. In addition, we show that our abstract procedure can be applied to efficiently debias SLOPE and square-root SLOPE, among other popular regularized procedures under certain assumptions. We provide thorough simulation results in support of our theoretical findings.
This paper introduces structured machine learning regressions for prediction and nowcasting with panel data consisting of series sampled at different frequencies. Motivated by the empirical problem of predicting corporate earnings for a large cross-s ection of firms with macroeconomic, financial, and news time series sampled at different frequencies, we focus on the sparse-group LASSO regularization. This type of regularization can take advantage of the mixed frequency time series panel data structures and we find that it empirically outperforms the unstructured machine learning methods. We obtain oracle inequalities for the pooled and fixed effects sparse-group LASSO panel data estimators recognizing that financial and economic data exhibit heavier than Gaussian tails. To that end, we leverage on a novel Fuk-Nagaev concentration inequality for panel data consisting of heavy-tailed $tau$-mixing processes which may be of independent interest in other high-dimensional panel data settings.
This paper studies the asymptotic convergence of computed dynamic models when the shock is unbounded. Most dynamic economic models lack a closed-form solution. As such, approximate solutions by numerical methods are utilized. Since the researcher can not directly evaluate the exact policy function and the associated exact likelihood, it is imperative that the approximate likelihood asymptotically converges -- as well as to know the conditions of convergence -- to the exact likelihood, in order to justify and validate its usage. In this regard, Fernandez-Villaverde, Rubio-Ramirez, and Santos (2006) show convergence of the likelihood, when the shock has compact support. However, compact support implies that the shock is bounded, which is not an assumption met in most dynamic economic models, e.g., with normally distributed shocks. This paper provides theoretical justification for most dynamic models used in the literature by showing the conditions for convergence of the approximate invariant measure obtained from numerical simulations to the exact invariant measure, thus providing the conditions for convergence of the likelihood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا