ﻻ يوجد ملخص باللغة العربية
We present the 3-{it dimensional} intrinsic alignment power spectra between the projected 2d galaxy shape/spin and the 3d tidal field across $0.1<k/h{rm Mpc}^{-1}<60$ using cosmological hydrodynamical simulation, Illustris-TNG300, at redshifts ranging from $0.3$ to $2$. The shape-tidal field alignment increases with galaxy mass and the linear alignment coefficient $A_{rm IA}$, defined with respect to the primordial tidal field, is found to have weak redshift dependence. We also show a promising detection of the shape/spin-tidal field alignments for stellar mass limited samples and a weak or almost null signal for star-forming galaxies for the TNG300 volume, $sim 0.01~(h^{-1}{rm Gpc})^3$. We further study the morphology and environmental dependence of the intrinsic alignment power spectra. The shape of massive disk- and spheroid-galaxies tend to align with the tidal field. The spin of low mass disks (and spheroids at low redshifts) tend to be parallel with the tidal field, while the spin of massive spheroids and disks tend to be perpendicular to tidal field. The shape and spin of massive centrals align with the tidal field at both small and large scales. Satellites show a radial alignment within the one-halo term region, and low mass satellites have an intriguing alignment signal in the two-halo term region. We also forecast a feasibility to measure the intrinsic alignment power spectrum for spectroscopic and imaging surveys such as Subaru HSC/PFS and DESI. Our results thus suggest that galaxy intrinsic alignment can be used as a promising tool for constraining the galaxy formation models.
Emission line galaxies (ELGs), more generally star-forming galaxies, are valuable tracers of large-scale structure and therefore main targets of upcoming wide-area spectroscopic galaxy surveys. We propose a fixed-aperture shape estimator of each ELG
We present the first measurements of the projected clustering and intrinsic alignments (IA) of galaxies observed by the Physics of the Accelerating Universe Survey (PAUS). With photometry in 40 narrow optical passbands ($450rm{nm}-850rm{nm}$), the qu
Intrinsic alignments (IA), correlations between the intrinsic shapes and orientations of galaxies on the sky, are both a significant systematic in weak lensing and a probe of the effect of large-scale structure on galactic structure and angular momen
We investigate the formation history of massive disk galaxies in hydro-dynamical simulation--the IllustrisTNG, to study why massive disk galaxies survive through cosmic time. 83 galaxies in the simulation are selected with M$_{*,z=0}$ $>8times10^{10}
In the cold dark matter (CDM) picture of structure formation, galaxy mass distributions are predicted to have a considerable amount of structure on small scales. Strong gravitational lensing has proven to be a useful tool for studying this small-scal