ﻻ يوجد ملخص باللغة العربية
Na3Bi was the first experimentally verified topological Dirac semimetal (TDS), and is a 3D analogue of graphene hosting relativistic Dirac fermions. Its unconventional momentum-energy relationship is interesting from a fundamental perspective, yielding exciting physical properties such as chiral charge carriers, the chiral anomaly, and weak anti-localization. It also shows promise for realising topological electronic devices such as topological transistors. In this review, an overview of the substantial progress achieved in the last few years on Na3Bi is presented, with a focus on technologically relevant large-area thin films synthesised via molecular beam epitaxy. Key theoretical aspects underpinning the unique electronic properties of Na3Bi are introduced. Next, the growth process on different substrates is reviewed. Spectroscopic and microscopic features are illustrated, and an analysis of semi-classical and quantum transport phenomena in different doping regimes is provided. The emergent properties arising from confinement in two dimensions, including thickness-dependent and electric-field driven topological phase transitions, are addressed, with an outlook towards current challenges and expected future progress.
Zinc Oxide thin films were grown on c-sapphire substrates using pulsed laser deposition. Pump power dependence of surface emission spectra, acquired using a quadrupled 266 nm laser, revealed room temperature stimulated emission (threshold of 900 kW/c
Ferromagnetism in topological insulators (TIs) opens a topologically non-trivial exchange band gap, providing an exciting platform to manipulate the topological order through an external magnetic field. Here, we experimentally show that the surface o
We report on a study of an ultrathin topological insulator film with hybridization between the top and bottom surfaces, placed in a quantizing perpendicular magnetic field. We calculate the full Landau level spectrum of the film as a function of the
We propose a method that can consecutively modulate the topological orders or the number of helical edge states in ultrathin film semiconductors without a magnetic field. By applying a staggered periodic potential, the system undergoes a transition f
It is well-known that helical surface states of a three-dimensional topological insulator (TI) do not respond to a static in-plane magnetic field. Formally this occurs because the in-plane magnetic field appears as a vector potential in the Dirac Ham