ترغب بنشر مسار تعليمي؟ اضغط هنا

A Recent Major Merger Tale for the Closest Giant Elliptical Galaxy Centaurus A

75   0   0.0 ( 0 )
 نشر من قبل Jianling Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used hydrodynamical simulations to model the formation of the closest giant elliptical galaxy, Centaurus A. We find that a single major merger event with a mass ratio up to 1.5, and which has happened ~2 Gyr ago, is able to reproduce many of its properties, including galaxy kinematics, the inner gas disk, stellar halo ages and metallicities, and numerous faint features observed in the halo. The elongated halo shape is mostly made of progenitor residuals deposited by the merger, which also contribute to stellar shells observed in the Centaurus A halo. The current model also reproduces the measured Planetary Nebulae line of sight velocity and their velocity dispersion. Models with small mass ratio and relatively low gas fraction result in a de Vaucouleurs profile distribution, which is consistent with observations and model expectations. A recent merger left imprints in the age distribution that are consistent with the young stellar and Globular Cluster populations (2-4 Gyrs) found within the halo. We conclude that even if not all properties of Centaurus A have been accurately reproduced, a recent major merger has likely occurred to form the Centaurus A galaxy as we observe it at present day.

قيم البحث

اقرأ أيضاً

We present the first census of giant molecular clouds (GMCs) complete down to 10$^6 M_{odot}$ and within the inner 4 kpc of the nearest giant elliptical and powerful radio galaxy, Centaurus A. We identified 689 GMCs using CO(1--0) data with 1 spati al resolution ($sim 20$ pc) and 2 km/s velocity resolution obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). The $I$(CO)-$N$(H$_2$) conversion factor based on the virial method is $X_{rm CO}$ = $(2 pm 1 )times10^{20}$ cm$^{-2}$(K km/s)$^{-1}$ for the entire molecular disk, consistent with that of the disks of spiral galaxies including the Milky Way, and $X_{rm CO}$ = $(5 pm 2)times10^{20}$ cm$^{-2}$(K km/s)$^{-1}$ for the circumnuclear disk (CND, within a galactocentric radius of 200 pc). We obtained the GMC mass spectrum distribution and find that the best-truncated power-law fit for the whole molecular disk, with index $gamma simeq -2.41 pm 0.02$ and upper cutoff mass $sim 1.3 times 10^{7} M_{odot}$, is also in agreement with that of nearby disk galaxies. A trend is found in the mass spectrum index from steep to shallow as we move to inner radii. Although the GMCs are in an elliptical galaxy, the general GMC properties in the molecular disk are as in spiral galaxies. However, in the CND, large offsets in the line-width-size scaling relations ($sim$ 0.3 dex higher than those in the GMCs in the molecular disk), a different $X_{rm CO}$ factor, and the shallowest GMC mass distribution shape ($gamma = -1.1 pm 0.2$) all suggest that there the GMCs are most strongly affected by the presence of the AGN and/or shear motions.
92 - Jianling Wang 2015
Many spiral galaxy haloes show stellar streams with various morphologies when observed with deep images. The origin of these tidal features is discussed, either coming from a satellite infall or caused by residuals of an ancient, gas-rich major merge r. By modelling the formation of the peculiar features observed in the NGC 4013 halo, we investigate their origin. By using GADGET -2 with implemented gas cooling, star formation, and feedback, we have modelled the overall NGC 4013 galaxy and its associated halo features. A gas-rich major merger occurring 2.7-4.6 Gyr ago succeeds in reproducing the NGC 4013 galaxy properties, including all the faint stellar features, strong gas warp, boxy-shaped halo and vertical 3.6 mum luminosity distribution. High gas fractions in the progenitors are sufficient to reproduce the observed thin and thick discs, with a small bulge fraction, as observed. A major merger is able to reproduce the overall NGC 4013 system, including the warp strength, the red colour and the high stellar mass density of the loop, while a minor merger model cannot. Because the gas-rich model suffices to create a pseudo-bulge with a small fraction of the light, NGC 4013 is perhaps the archetype of a late-type galaxy formed by a relatively recent merger. Then late type, pseudo-bulge spirals are not mandatorily made through secular evolution, and the NGC 4013 properties also illustrate that strong warps in isolated galaxies may well occur at a late phase of a gas-rich major merger.
We present ALMA CO(1-0) observations toward the dust lane of the nearest elliptical and radio galaxy, NGC 5128 (Centaurus A), with high angular resolution ($sim$ 1 arcsec, or 18 pc), including information from large to small spatial scales and total flux. We find a total molecular gas mass of 1.6$times$10$^9$ $M_odot$ and we reveal the presence of filamentary components more extended than previously seen, up to a radius of 4 kpc. We find that the global star formation rate is $sim$1 Msol yr$^{-1}$, which yields a star formation efficiency (SFE) of 0.6 Gyr$^{-1}$ (depletion time $tau =$1.5 Gyr), similar to those in disk galaxies. We show the most detailed view to date (40,pc resolution) of the relation between molecular gas and star formation within the stellar component of an elliptical galaxy, from several kpc scale to the circumnuclear region close to the powerful radio jet. Although on average the SFEs are similar to those of spiral galaxies, the circumnuclear disk (CND) presents SFEs of 0.3 Gyr$^{-1}$, lower by a factor of 4 than the outer disk. The low SFE in the CND is in contrast to the high SFEs found in the literature for the circumnuclear regions of some nearby disk galaxies with nuclear activity, probably as a result of larger shear motions and longer AGN feedback. The higher SFEs in the outer disk suggests that only central molecular gas or filaments with sufficient density and strong shear motions will remain in $sim$1 Gyr, which will later result in the compact molecular distributions and low SFEs usually seen in other giant ellipticals with cold gas.
Recent observations of our neighbouring galaxy M31 have revealed that its disk was shaped by widespread events. The evidence for this includes the high dispersion ($V/sigma$ $le$ 3) of stars older than 2 Gyr, and a global star formation episode, 2-4 Gyr ago. Using the modern hydrodynamical code, GIZMO, we have performed 300 high-resolution simulations to explore the extent to which these observed properties can be explained by a single merger. We find that the observed M31 disk resembles models having experienced a 4:1 merger, in which the nuclei coalesced 1.8-3 Gyr ago, and where the first passage took place 7 to 10 Gyr ago at a large pericentre distance (32 kpc). We also show that within a family of orbital parameters, the Giant Stream (GS) can be formed with various merger mass-ratios, from 2:1 to 300:1. A recent major merger may be the only way to create the very unusual age-dispersion relation in the disk. It reproduces and explains the long-lived 10 kpc ring, the widespread and recent star formation event, the absence of a remnant of the GS progenitor, the apparent complexity of the 3D spatial distribution of the GS, the NE and G Clumps and their formation process, and the observed slope of the halo profile. These modelling successes lead us to propose that the bulk of the substructure in the M31 halo, as well as the complexity of the inner galaxy, may be attributable to a single major interaction with a galaxy that has now fully coalesced with Andromeda.
Globular clusters (GCs) are thought to be ancient relics from the early formative phase of galaxies, although their physical origin remains uncertain. GCs are most numerous around massive elliptical galaxies, where they can exhibit a broad colour dis persion, suggesting a wide metallicity spread. Here, we show that many thousands of compact and massive (~5$times$10$^{rm 3}-$3$times$ 10$^{rm 6} M_{odot}$) star clusters have formed at an approximately steady rate over, at least, the past ~1Gyr around NGC 1275, the central giant elliptical galaxy of the Perseus cluster. Beyond ~1Gyr, these star clusters are indistinguishable in broadband optical colours from the more numerous GCs. Their number distribution exhibits a similar dependence with luminosity and mass as the GCs, whereas their spatial distribution resembles a filamentary network of multiphase gas associated with cooling of the intracluster gas. The sustained formation of these star clusters demonstrates that progenitor GCs can form over cosmic history from cooled intracluster gas, thus contributing to both the large number and broad colour dispersion$-$owing to an age spread, in addition to a spread in metallicity$-$of GCs in massive elliptical galaxies. The progenitor GCs have minimal masses well below the maximal masses of Galactic open star clusters, affirming a common formation mechanism for star clusters over all mass scales irrespective of their formative pathways.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا