ترغب بنشر مسار تعليمي؟ اضغط هنا

Preference Robust Optimization for Quasi-concave Choice Functions

98   0   0.0 ( 0 )
 نشر من قبل Jian Wu
 تاريخ النشر 2020
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In behavioural economics, a decision makers preferences are expressed by choice functions. Preference robust optimization (PRO) is concerned with problems where the decision makers preferences are ambiguous, and the optimal decision is based on a robust choice function with respect to a preference ambiguity set. In this paper, we propose a PRO model to support choice functions that are: (i) monotonic (prefer more to less), (ii) quasi-concave (prefer diversification), and (iii) multi-attribute (have multiple objectives/criteria). As our main result, we show that the robust choice function can be constructed efficiently by solving a sequence of linear programming problems. Then, the robust choice function can be optimized efficiently by solving a sequence of convex optimization problems. Our numerical experiments for the portfolio optimization and capital allocation problems show that our method is practical and scalable.



قيم البحث

اقرأ أيضاً

Decision makers preferences are often captured by some choice functions which are used to rank prospects. In this paper, we consider ambiguity in choice functions over a multi-attribute prospect space. Our main result is a robust preference model whe re the optimal decision is based on the worst-case choice function from an ambiguity set constructed through preference elicitation with pairwise comparisons of prospects. Differing from existing works in the area, our focus is on quasi-concave choice functions rather than concave functions and this enables us to cover a wide range of utility/risk preference problems including multi-attribute expected utility and $S$-shaped aspirational risk preferences. The robust choice function is increasing and quasi-concave but not necessarily translation invariant, a key property of monetary risk measures. We propose two approaches based respectively on the support functions and level functions of quasi-concave functions to develop tractable formulations of the maximin preference robust optimization model. The former gives rise to a mixed integer linear programming problem whereas the latter is equivalent to solving a sequence of convex risk minimization problems. To assess the effectiveness of the proposed robust preference optimization model and numerical schemes, we apply them to a security budget allocation problem and report some preliminary results from experiments.
215 - Jia Liu , Zhiping Chen , Huifu Xu 2021
In this paper, we consider a multistage expected utility maximization problem where the decision makers utility function at each stage depends on historical data and the information on the true utility function is incomplete. To mitigate the risk ari sing from ambiguity of the true utility, we propose a maximin robust model where the optimal policy is based on the worst sequence of utility functions from an ambiguity set constructed with partially available information about the decision makers preferences. We then show that the multistage maximin problem is time consistent when the utility functions are state-dependent and demonstrate with a counter example that the time consistency may not be retained when the utility functions are state-independent. With the time consistency, we show the maximin problem can be solved by a recursive formula whereby a one-stage maximin problem is solved at each stage beginning from the last stage. Moreover, we propose two approaches to construct the ambiguity set: a pairwise comparison approach and a $zeta$-ball approach where a ball of utility functions centered at a nominal utility function under $zeta$-metric is considered. To overcome the difficulty arising from solving the infinite dimensional optimization problem in computation of the worst-case expected utility value, we propose piecewise linear approximation of the utility functions and derive error bound for the approximation under moderate conditions. Finally we develop a scenario tree-based computational scheme for solving the multistage preference robust optimization model and report some preliminary numerical results.
286 - Zongxia Liang , Jicheng Yao 2010
This paper considers nonlinear regular-singular stochastic optimal control of large insurance company. The company controls the reinsurance rate and dividend payout process to maximize the expected present value of the dividend pay-outs until the tim e of bankruptcy. However, if the optimal dividend barrier is too low to be acceptable, it will make the company result in bankruptcy soon. Moreover, although risk and return should be highly correlated, over-risking is not a good recipe for high return, the supervisors of the company have to impose their preferred risk level and additional charge on firm seeking services beyond or lower than the preferred risk level. These indeed are nonlinear regular-singular stochastic optimal problems under ruin probability constraints. This paper aims at solving this kind of the optimal problems, that is, deriving the optimal retention ratio,dividend payout level, optimal return function and optimal control strategy of the insurance company. As a by-product, the paper also sets a risk-based capital standard to ensure the capital requirement of can cover the total given risk, and the effect of the risk level on optimal retention ratio, dividend payout level and optimal control strategy are also presented.
In this paper, we examine the effect of background risk on portfolio selection and optimal reinsurance design under the criterion of maximizing the probability of reaching a goal. Following the literature, we adopt dependence uncertainty to model the dependence ambiguity between financial risk (or insurable risk) and background risk. Because the goal-reaching objective function is non-concave, these two problems bring highly unconventional and challenging issues for which classical optimization techniques often fail. Using quantile formulation method, we derive the optimal solutions explicitly. The results show that the presence of background risk does not alter the shape of the solution but instead changes the parameter value of the solution. Finally, numerical examples are given to illustrate the results and verify the robustness of our solutions.
This paper studies the matrix completion problem under arbitrary sampling schemes. We propose a new estimator incorporating both max-norm and nuclear-norm regularization, based on which we can conduct efficient low-rank matrix recovery using a random subset of entries observed with additive noise under general non-uniform and unknown sampling distributions. This method significantly relaxes the uniform sampling assumption imposed for the widely used nuclear-norm penalized approach, and makes low-rank matrix recovery feasible in more practical settings. Theoretically, we prove that the proposed estimator achieves fast rates of convergence under different settings. Computationally, we propose an alternating direction method of multipliers algorithm to efficiently compute the estimator, which bridges a gap between theory and practice of machine learning methods with max-norm regularization. Further, we provide thorough numerical studies to evaluate the proposed method using both simulated and real datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا