ﻻ يوجد ملخص باللغة العربية
The ferrimagnetic spinel MnCr2S4 shows a variety of magnetic-field-induced phase transitions owing to bond frustration and strong spin-lattice coupling. However, the site-resolved magnetic properties at the respective field-induced phases in high magnetic fields remain elusive. Our soft x-ray magnetic circular dichroism studies up to 40 T directly evidence element-selective magnetic-moment reorientations in the field-induced phases. The complex magnetic structures are further supported by entropy changes extracted from magnetocaloric-effect measurements. Moreover, thermodynamic experiments reveal an unusual tetracritical point in the H-T phase diagram of MnCr2S4 due to strong spin-lattice coupling.
Magnetization and neutron diffraction measurements indicate long-range antiferromagnetic ordering below TN=4 K in the 2D, S=1/2 Heisenberg antiferromagnet K2V3O8. The ordered state exhibits ``weak ferromagnetism and novel, field-induced spin reorient
Spin supersolids and spin superfluids reveal complex canted spin structures with independent order of longitudinal and transverse spin components. This work addresses the question whether these exotic phases can exhibit spin-driven ferroelectricity.
We report on the magnetocrystalline anisotropy energy (MAE) and spin reorientation in antiferromagnetic state of spin $S=1/2$ tetramer system SeCuO$_3$ observed in torque magnetometry measurements in magnetic fields $H<5$~T and simulated using densit
We have studied a EuFe2As2 single crystal by neutron diffraction under magnetic fields up to 3.5 T and temperatures down to 2 K. A field induced spin reorientation is observed in the presence of a magnetic field along both the a and c axes, respectiv
$beta$-TeVO$_4$ is a frustrated spin 1/2 zig-zag chain system,where spin-density-wave (SDW), vector chiral (VC)and an exotic dynamic spin-stripe phase compete at low temperatures. Here we use torque magnetometry to study the anisotropy of these phase