ترغب بنشر مسار تعليمي؟ اضغط هنا

How is Machine Learning Useful for Macroeconomic Forecasting?

101   0   0.0 ( 0 )
 نشر من قبل Philippe Goulet Coulombe
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We move beyond Is Machine Learning Useful for Macroeconomic Forecasting? by adding the how. The current forecasting literature has focused on matching specific variables and horizons with a particularly successful algorithm. In contrast, we study the usefulness of the underlying features driving ML gains over standard macroeconometric methods. We distinguish four so-called features (nonlinearities, regularization, cross-validation and alternative loss function) and study their behavior in both the data-rich and data-poor environments. To do so, we design experiments that allow to identify the treatment effects of interest. We conclude that (i) nonlinearity is the true game changer for macroeconomic prediction, (ii) the standard factor model remains the best regularization, (iii) K-fold cross-validation is the best practice and (iv) the $L_2$ is preferred to the $bar epsilon$-insensitive in-sample loss. The forecasting gains of nonlinear techniques are associated with high macroeconomic uncertainty, financial stress and housing bubble bursts. This suggests that Machine Learning is useful for macroeconomic forecasting by mostly capturing important nonlinearities that arise in the context of uncertainty and financial frictions.

قيم البحث

اقرأ أيضاً

In a low-dimensional linear regression setup, considering linear transformations/combinations of predictors does not alter predictions. However, when the forecasting technology either uses shrinkage or is nonlinear, it does. This is precisely the fab ric of the machine learning (ML) macroeconomic forecasting environment. Pre-processing of the data translates to an alteration of the regularization -- explicit or implicit -- embedded in ML algorithms. We review old transformations and propose new ones, then empirically evaluate their merits in a substantial pseudo-out-sample exercise. It is found that traditional factors should almost always be included as predictors and moving average rotations of the data can provide important gains for various forecasting targets. Also, we note that while predicting directly the average growth rate is equivalent to averaging separate horizon forecasts when using OLS-based techniques, the latter can substantially improve on the former when regularization and/or nonparametric nonlinearities are involved.
Based on evidence gathered from a newly built large macroeconomic data set for the UK, labeled UK-MD and comparable to similar datasets for the US and Canada, it seems the most promising avenue for forecasting during the pandemic is to allow for gene ral forms of nonlinearity by using machine learning (ML) methods. But not all nonlinear ML methods are alike. For instance, some do not allow to extrapolate (like regular trees and forests) and some do (when complemented with linear dynamic components). This and other crucial aspects of ML-based forecasting in unprecedented times are studied in an extensive pseudo-out-of-sample exercise.
100 - Muhammad Salar Khan 2021
Within the national innovation system literature, empirical analyses are severely lacking for developing economies. Particularly, the low- and middle-income countries (LMICs) eligible for the World Banks International Development Association (IDA) su pport, are rarely part of any empirical discourse on growth, development, and innovation. One major issue hindering panel analyses in LMICs, and thus them being subject to any empirical discussion, is the lack of complete data availability. This work offers a new complete panel dataset with no missing values for LMICs eligible for IDAs support. I use a standard, widely respected multiple imputation technique (specifically, Predictive Mean Matching) developed by Rubin (1987). This technique respects the structure of multivariate continuous panel data at the country level. I employ this technique to create a large dataset consisting of many variables drawn from publicly available established sources. These variables, in turn, capture six crucial country-level capacities: technological capacity, financial capacity, human capital capacity, infrastructural capacity, public policy capacity, and social capacity. Such capacities are part and parcel of the National Absorptive Capacity Systems (NACS). The dataset (MSK dataset) thus produced contains data on 47 variables for 82 LMICs between 2005 and 2019. The dataset has passed a quality and reliability check and can thus be used for comparative analyses of national absorptive capacities and development, transition, and convergence analyses among LMICs.
We develop the methodology and a detailed case study in use of a class of Bayesian predictive synthesis (BPS) models for multivariate time series forecasting. This extends the recently introduced foundational framework of BPS to the multivariate sett ing, with detailed application in the topical and challenging context of multi-step macroeconomic forecasting in a monetary policy setting. BPS evaluates-- sequentially and adaptively over time-- varying forecast biases and facets of miscalibration of individual forecast densities, and-- critically-- of time-varying inter-dependencies among them over multiple series. We develop new BPS methodology for a specific subclass of the dynamic multivariate latent factor models implied by BPS theory. Structured dynamic latent factor BPS is here motivated by the application context-- sequential forecasting of multiple US macroeconomic time series with forecasts generated from several traditional econometric time series models. The case study highlights the potential of BPS to improve of forecasts of multiple series at multiple forecast horizons, and its use in learning dynamic relationships among forecasting models or agents.
140 - Sonja Tilly , Giacomo Livan 2021
This study leverages narrative from global newspapers to construct theme-based knowledge graphs about world events, demonstrating that features extracted from such graphs improve forecasts of industrial production in three large economies compared to a number of benchmarks. Our analysis relies on a filtering methodology that extracts backbones of statistically significant edges from large graph data sets. We find that changes in the eigenvector centrality of nodes in such backbones capture shifts in relative importance between different themes significantly better than graph similarity measures. We supplement our results with an interpretability analysis, showing that the theme categories disease and economic have the strongest predictive power during the time period that we consider. Our work serves as a blueprint for the construction of parsimonious - yet informative - theme-based knowledge graphs to monitor in real time the evolution of relevant phenomena in socio-economic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا