ﻻ يوجد ملخص باللغة العربية
Complexity measures in the context of the Integrated Information Theory of consciousness try to quantify the strength of the causal connections between different neurons. This is done by minimizing the KL-divergence between a full system and one without causal connections. Various measures have been proposed and compared in this setting. We will discuss a class of information geometric measures that aim at assessing the intrinsic causal influences in a system. One promising candidate of these measures, denoted by $Phi_{CIS}$, is based on conditional independence statements and does satisfy all of the properties that have been postulated as desirable. Unfortunately it does not have a graphical representation which makes it less intuitive and difficult to analyze. We propose an alternative approach using a latent variable which models a common exterior influence. This leads to a measure $Phi_{CII}$, Causal Information Integration, that satisfies all of the required conditions. Our measure can be calculated using an iterative information geometric algorithm, the em-algorithm. Therefore we are able to compare its behavior to existing integrated information measures.
How many bits of information are revealed by a learning algorithm for a concept class of VC-dimension $d$? Previous works have shown that even for $d=1$ the amount of information may be unbounded (tend to $infty$ with the universe size). Can it be th
We propose a new estimator to measure directed dependencies in time series. The dimensionality of data is first reduced using a new non-uniform embedding technique, where the variables are ranked according to a weighted sum of the amount of new infor
Three decades of research in communication complexity have led to the invention of a number of techniques to lower bound randomized communication complexity. The majority of these techniques involve properties of large submatrices (rectangles) of the
We provide a negative resolution to a conjecture of Steinke and Zakynthinou (2020a), by showing that their bound on the conditional mutual information (CMI) of proper learners of Vapnik--Chervonenkis (VC) classes cannot be improved from $d log n +2$
For a known weak signal in additive white noise, the asymptotic performance of a locally optimum processor (LOP) is shown to be given by the Fisher information (FI) of a standardized even probability density function (PDF) of noise in three cases: (i