ﻻ يوجد ملخص باللغة العربية
A congruence on an inverse semigroup $S$ is determined uniquely by its kernel and trace. Denoting by $rho_k$ and $rho_t$ the least congruence on $S$ having the same kernel and the same trace as $rho$, respectively, and denoting by $omega$ the universal congruence on $S$, we consider the sequence $omega$, $omega_k$, $omega_t$, $(omega_k)_t$, $(omega_t)_k$, $((omega_k)_t)_k$, $((omega_t)_k)_t$, $cdots$. The quotients ${S/omega_k}$, ${S/omega_t}$, ${S/(omega_k)_t}$, ${S/(omega_t)_k}$, ${S/((omega_k)_t)_k}$, ${S/((omega_t)_k)_t}$, $cdots$, as $S$ runs over all inverse semigroups, form quasivarieties. This article explores the relationships among these quasivarieties.
As an appropriate generalisation of the features of the classical (Schein) theory of representations of inverse semigroups in $mathscr{I}_{X}$, a theory of representations of inverse semigroups by homomorphisms into complete atomistic inverse algebra
We find necessary and sufficient conditions on an (inverse) semigroup $X$ under which its semigroups of maximal linked systems $lambda(X)$, filters $phi(X)$, linked upfamilies $N_2(X)$, and upfamilies $upsilon(X)$ are inverse.
A new construction of a free inverse semigroup was obtained by Poliakova and Schein in 2005. Based on their result, we find a Groebner-Shirshov basis of a free inverse semigroup relative to the deg-lex order of words. In particular, we give the (uniq
This note proves a generalisation to inverse semigroups of Anisimovs theorem that a group has regular word problem if and only if it is finite, answering a question of Stuart Margolis. The notion of word problem used is the two-tape word problem -- t
Let $X$ be a nonempty set and $X^{2}$ be the Cartesian square of $X$. Some semigroups of binary relations generated partitions of $X^2$ are studied. In particular, the algebraic structure of semigroups generated by the finest partition of $X^{2}$ and