ترغب بنشر مسار تعليمي؟ اضغط هنا

Black holes with Skyrmion-anti-Skyrmion hairs

144   0   0.0 ( 0 )
 نشر من قبل Yakov Shnir
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yakov Shnir




اسأل ChatGPT حول البحث

We construct static axially symmetric black holes in multi-Skyrmion configurations coupled to Einstein gravity in four dimensional asymptotically flat space-time. In a simplest case the event horizon is located in-between a Skyrmion-anti-Skyrmion pair, other solutions represent black holes with gravitationally bounded chains of Skyrmions and anti-Skyrmions placed along the axis of symmetry in alternating order. We discuss the properties of these hairy black holes and exhibit their domain of existence.

قيم البحث

اقرأ أيضاً

Holography relates the quasinormal modes frequencies of AdS black holes to the pole structure of the dual field theory propagator. These modes thus provide the timescale for the approach to thermal equilibrium in the CFT. Here, we study how such pole structure and, in particular, the time to equilibrium can get modified in the presence of a black hole hair. More precisely, we consider in AdS a set of relaxed boundary conditions that allow for a low decaying graviton mode near the boundary, which triggers an additional degree of freedom. We solve the scalar field response on such background analytically and non-perturbatively in the hair parameter, and we obtain how the pole structure gets affected by the presence of a black hole hair, relative to that of the usual AdS black hole geometry. The setup we consider is a massive 3D gravity theory, which admits a one-parameter family deformation of BTZ solution and enables us to solve the problem analytically. The theory also admits an AdS$_3$ soliton which gives a family of vacua that can be constructed from the hairy black hole by means of a double Wick rotation. The spectrum of normal modes on the latter geometry can also be solved analytically; we study its properties in relation to those of the AdS$_3$ vacuum.
We study the pair production of charged scalar particles from the five-dimensional near extremal Reissner- Nordstrom-Anti de Sitter (RN-AdS5) black hole. The pair production rate and the absorption cross section ratio in the full spacetime are obtain ed and are shown to have proportional relation with their counterparts in the near horizon region. In addition, the holographic descriptions of the pair production both in the IR CFT in the near horizon region and the UV CFT at the asymptotic spatial boundary of the RN-AdS5 black hole are analyzed in the AdS2/CFT1and AdS5/CFT4correspondences, respectively. This work gives a complete description of scalar pair production in the near extremal RN-AdS5black hole.
We use the recipe of arXiv:1003.2974 to find half-BPS near-horizon geometries in the t$^3$ model of $N=2$, $D=4$ gauged supergravity, and explicitely construct some new examples. Among these are black holes with noncompact horizons, but also with sph erical horizons that have conical singularities (spikes) at one of the two poles. A particular family of them is extended to the full black hole geometry. Applying a double-Wick rotation to the near-horizon region, we obtain solutions with NUT charge that asymptote to curved domain walls with AdS$_3$ world volume. These new solutions may provide interesting testgrounds to address fundamental questions related to quantum gravity and holography.
We study $mathcal{N}=2$ supergravity with higher-derivative corrections that preserve the $mathcal{N}=2$ supersymmetry and show that Kerr-Newman black holes are solutions to these theories. Modifications of the black hole entropy due to the higher de rivatives are universal and apply even in the BPS and Schwarzschild limits. Our solutions and their entropy are greatly simplified by supersymmetry of the theory even though the black holes generally do not preserve any of the supersymmetry.
We propose a correspondence between an Anyon Van der Waals fluid and a (2+1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter $alpha$ ($0<alpha<1$) characterizes this intermediate statistics of Anyons. The equation of state for the Anyon Van der Waals fluid shows that it has a quasi Fermi-Dirac statistics for $alpha > alpha_c$, but a quasi Bose-Einstein statistics for $alpha< alpha_c$. By defining a general form of the metric for the (2+1) dimensional AdS black hole and considering the temperature of the black hole to be equal with that of the Anyon Van der Waals fluid, we construct the exact form of the metric for a (2+1) dimensional AdS black hole. The thermodynamic properties of this black hole is consistent with those of the Anyon Van der Waals fluid. For $alpha< alpha_c$, the solution exhibits a quasi Bose-Einstein statistics. For $alpha > alpha_c$ and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا