ﻻ يوجد ملخص باللغة العربية
Microlensing planets occurring on faint source stars can escape detection due to their weak signals. Occasionally, detections of such planets are not reported due to the difficulty of extracting high-profile scientific issues on the detected planets. For the solid demographic census of microlensing planetary systems based on a complete sample, we investigate the microlensing data obtained in the 2016 and 2017 seasons to search for planetary signals in faint-source lensing events. From this investigation, we find four unpublished microlensing planets including KMT-2016-BLG-2364Lb, KMT-2016-BLG-2397Lb, OGLE-2017-BLG-0604Lb, and OGLE-2017-BLG-1375Lb. We analyze the observed lensing light curves and determine their lensing parameters. From Bayesian analyses conducted with the constraints from the measured parameters, it is found that the masses of the hosts and planets are in the ranges $0.50lesssim M_{rm host}/M_odotlesssim 0.85$ and $0.5 lesssim M_{rm p}/M_{rm J}lesssim 13.2$, respectively, indicating that all planets are giant planets around host stars with subsolar masses. The lenses are located in the distance range of $3.8 lesssim dl/{rm kpc}lesssim 6.4$. It is found that the lenses of OGLE-2017-BLG-0604 and OGLE-2017-BLG-1375 are likely to be in the Galactic disk.
We conducted a project of reinvestigating the 2017--2019 microlensing data collected by the high-cadence surveys with the aim of finding planets that were missed due to the deviations of planetary signals from the typical form of short-term anomalies
The phenomenon of microlensing has successfully been used to detect extrasolar planets. By observing characteristic, rare deviations in the gravitational microlensing light curve one can discover that a lens is a star--planet system. In this paper we
We investigate the gravitational microlensing event KMT-2019-BLG-1715, of which light curve shows two short-term anomalies from a caustic-crossing binary-lensing light curve: one with a large deviation and the other with a small deviation. We identif
KMT-2016-BLG-2605, with planet-host mass ratio $q=0.012pm 0.001$, has the shortest Einstein timescale, $t_e = 3.41pm 0.13,$days, of any planetary microlensing event to date. This prompts us to examine the full sample of 7 short ($t_e<7,$day) planetar
We search for microlensing planets with signals exhibiting no caustic-crossing features, considering the possibility that such signals may be missed due to their weak and featureless nature. For this purpose, we reexamine the lensing events found by