ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey of Coded Distributed Computing

166   0   0.0 ( 0 )
 نشر من قبل Cong Luong Nguyen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Distributed computing has become a common approach for large-scale computation of tasks due to benefits such as high reliability, scalability, computation speed, and costeffectiveness. However, distributed computing faces critical issues related to communication load and straggler effects. In particular, computing nodes need to exchange intermediate results with each other in order to calculate the final result, and this significantly increases communication overheads. Furthermore, a distributed computing network may include straggling nodes that run intermittently slower. This results in a longer overall time needed to execute the computation tasks, thereby limiting the performance of distributed computing. To address these issues, coded distributed computing (CDC), i.e., a combination of coding theoretic techniques and distributed computing, has been recently proposed as a promising solution. Coding theoretic techniques have proved effective in WiFi and cellular systems to deal with channel noise. Therefore, CDC may significantly reduce communication load, alleviate the effects of stragglers, provide fault-tolerance, privacy and security. In this survey, we first introduce the fundamentals of CDC, followed by basic CDC schemes. Then, we review and analyze a number of CDC approaches proposed to reduce the communication costs, mitigate the straggler effects, and guarantee privacy and security. Furthermore, we present and discuss applications of CDC in modern computer networks. Finally, we highlight important challenges and promising research directions related to CDC



قيم البحث

اقرأ أيضاً

171 - Haoning Chen , Youlong Wu 2020
We consider a MapReduce-type task running in a distributed computing model which consists of ${K}$ edge computing nodes distributed across the edge of the network and a Master node that assists the edge nodes to compute output functions. The Master n ode and the edge nodes, both equipped with some storage memories and computing capabilities, are connected through a multicast network. We define the communication time spent during the transmission for the sequential implementation (all nodes send symbols sequentially) and parallel implementation (the Master node can send symbols during the edge nodes transmission), respectively. We propose a mixed coded distributed computing scheme that divides the system into two subsystems where the coded distributed computing (CDC) strategy proposed by Songze Li emph{et al.} is applied into the first subsystem and a novel master-aided CDC strategy is applied into the second subsystem. We prove that this scheme is optimal, i.e., achieves the minimum communication time for both the sequential and parallel implementation, and establish an {emph{optimal}} information-theoretic tradeoff between the overall communication time, computation load, and the Master nodes storage capacity. It demonstrates that incorporating a Master node with storage and computing capabilities can further reduce the communication time. For the sequential implementation, we deduce the approximately optimal file allocation between the two subsystems, which shows that the Master node should map as many files as possible in order to achieve smaller communication time. For the parallel implementation, if the Master nodes storage and computing capabilities are sufficiently large (not necessary to store and map all files), then the proposed scheme requires at most 1/2 of the minimum communication time of system without the help of the Master node.
The growing size of modern datasets necessitates splitting a large scale computation into smaller computations and operate in a distributed manner. Adversaries in a distributed system deliberately send erroneous data in order to affect the computatio n for their benefit. Boolean functions are the key components of many applications, e.g., verification functions in blockchain systems and design of cryptographic algorithms. We consider the problem of computing a Boolean function in a distributed computing system with particular focus on emph{security against Byzantine workers}. Any Boolean function can be modeled as a multivariate polynomial with high degree in general. However, the security threshold (i.e., the maximum number of adversarial workers can be tolerated such that the correct results can be obtained) provided by the recent proposed Lagrange Coded Computing (LCC) can be extremely low if the degree of the polynomial is high. We propose three different schemes called emph{coded Algebraic normal form (ANF)}, emph{coded Disjunctive normal form (DNF)} and emph{coded polynomial threshold function (PTF)}. The key idea of the proposed schemes is to model it as the concatenation of some low-degree polynomials and threshold functions. In terms of the security threshold, we show that the proposed coded ANF and coded DNF are optimal by providing a matching outer bound.
Motivated by emerging applications to the edge computing paradigm, we introduce a two-layer erasure-coded fault-tolerant distributed storage system offering atomic access for read and write operations. In edge computing, clients interact with an edge -layer of servers that is geographically near; the edge-layer in turn interacts with a back-end layer of servers. The edge-layer provides low latency access and temporary storage for client operations, and uses the back-end layer for persistent storage. Our algorithm, termed Layered Data Storage (LDS) algorithm, offers several features suitable for edge-computing systems, works under asynchronous message-passing environments, supports multiple readers and writers, and can tolerate $f_1 < n_1/2$ and $f_2 < n_2/3$ crash failures in the two layers having $n_1$ and $n_2$ servers, respectively. We use a class of erasure codes known as regenerating codes for storage of data in the back-end layer. The choice of regenerating codes, instead of popular choices like Reed-Solomon codes, not only optimizes the cost of back-end storage, but also helps in optimizing communication cost of read operations, when the value needs to be recreated all the way from the back-end. The two-layer architecture permits a modular implementation of atomicity and erasure-code protocols; the implementation of erasure-codes is mostly limited to interaction between the two layers. We prove liveness and atomicity of LDS, and also compute performance costs associated with read and write operations. Further, in a multi-object system running $N$ independent instances of LDS, where only a small fraction of the objects undergo concurrent accesses at any point during the execution, the overall storage cost is dominated by that of persistent storage in the back-end layer, and is given by $Theta(N)$.
This paper shows for the first time that distributed computing can be both reliable and efficient in an environment that is both highly dynamic and hostile. More specifically, we show how to maintain clusters of size $O(log N)$, each containing more than two thirds of honest nodes with high probability, within a system whose size can vary textit{polynomially} with respect to its initial size. Furthermore, the communication cost induced by each node arrival or departure is polylogarithmic with respect to $N$, the maximal size of the system. Our clustering can be achieved despite the presence of a Byzantine adversary controlling a fraction $bad leq {1}{3}-epsilon$ of the nodes, for some fixed constant $epsilon > 0$, independent of $N$. So far, such a clustering could only be performed for systems who size can vary constantly and it was not clear whether that was at all possible for polynomial variances.
In modern distributed computing systems, unpredictable and unreliable infrastructures result in high variability of computing resources. Meanwhile, there is significantly increasing demand for timely and event-driven services with deadline constraint s. Motivated by measurements over Amazon EC2 clusters, we consider a two-state Markov model for variability of computing speed in cloud networks. In this model, each worker can be either in a good state or a bad state in terms of the computation speed, and the transition between these states is modeled as a Markov chain which is unknown to the scheduler. We then consider a Coded Computing framework, in which the data is possibly encoded and stored at the worker nodes in order to provide robustness against nodes that may be in a bad state. With timely computation requests submitted to the system with computation deadlines, our goal is to design the optimal computation-load allocation scheme and the optimal data encoding scheme that maximize the timely computation throughput (i.e, the average number of computation tasks that are accomplished before their deadline). Our main result is the development of a dynamic computation strategy called Lagrange Estimate-and Allocate (LEA) strategy, which achieves the optimal timely computation throughput. It is shown that compared to the static allocation strategy, LEA increases the timely computation throughput by 1.4X - 17.5X in various scenarios via simulations and by 1.27X - 6.5X in experiments over Amazon EC2 clusters
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا