ﻻ يوجد ملخص باللغة العربية
The study of nonlinear waves that collapse in finite time is a theme of universal interest, e.g. within optical, atomic, plasma physics, and nonlinear dynamics. Here we revisit the quintessential example of the nonlinear Schrodinger equation and systematically derive a normal form for the emergence of blowup solutions from stationary ones. While this is an extensively studied problem, such a normal form, based on the methodology of asymptotics beyond all algebraic orders, unifies both the dimension-dependent and power-law-dependent bifurcations previously studied; it yields excellent agreement with numerics in both leading and higher-order effects; it is applicable to both infinite and finite domains; and it is valid in all (subcritical, critical and supercritical) regimes.
We discuss spatial dynamics and collapse scenarios of localized waves governed by the nonlinear Schr{o}dinger equation with nonlocal nonlinearity. Firstly, we prove that for arbitrary nonsingular attractive nonlocal nonlinear interaction in arbitrary
We discuss the finite-time collapse, also referred as blow-up, of the solutions of a discrete nonlinear Schr{o}dinger (DNLS) equation incorporating linear and nonlinear gain and loss. This DNLS system appears in many inherently discrete physical cont
We numerically realize breather gas for the focusing nonlinear Schrodinger equation. This is done by building a random ensemble of N $sim$ 50 breathers via the Darboux transform recursive scheme in high precision arithmetics. Three types of breather
We study the azimuthal modulational instability of vortices with different topological charges, in the focusing two-dimensional nonlinear Schr{o}dinger (NLS) equation. The method of studying the stability relies on freezing the radial direction in th
We show that the nonlinear stage of modulational instability induced by parametric driving in the {em defocusing} nonlinear Schrodinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong drivi