ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of Light-induced Metastable Martensitic Anomaly Controlled by Single-Cycle Terahertz Pulses

230   0   0.0 ( 0 )
 نشر من قبل Jigang Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an ultrafast photoinduced phase transition with a strikingly long-lived Martensitic anomaly driven by above-threshold single-cycle terahertz (THz) pulses in Nb$_3$Sn. A non-thermal, THz-induced depletion of low frequency conductivity indicates increased gap splitting of high energy $Gamma_{12}$ bands by removal of their degeneracies which enhances the Martensitic phase. In contrast, optical pumping leads to a $Gamma_{12}$ gap melting. Such light-induced non-equilibrium Martensitic instability persists up to a critical temperature $sim$100 K, i.e., more than twice the equilibrium temperature, and can be stabilized beyond technologically-relevant, nanosecond timescales. Together with first-principle simulations, we identify a compelling THz tuning of structural fluctuations via E$_u$ phonons to achieve a non-equilibrium ordering at high temperatures far exceeding those for equilibrium states.

قيم البحث

اقرأ أيضاً

64 - X. Yang , X. Zhao , C. Vaswani 2018
We report the low-energy electrodynamics of a moderately clean A15 superconductor (SC) following ultrafast excitation to understand and manipulate terahertz (THz) quasi--particle (QP) transport by tuning pump photoexcitation of from competing orders. Using 35-fs optical pulses, we observe a non-thermal enhancement in the low frequency conductivity, opposite to that observed for THz pump, which persists up to an additional critical temperature, above the SC one, from an electronic order in the Martensitic normal state. In the SC state, the fluence dependence of pair breaking kinetics together with an analytic model provides evidence for a `one photon-to-one pair non-resonant energy transfer during the laser pulse. Such initial transfer of photon energy $hbaromega$ to QPs at the {em quantum} limit, set by $2Delta_{SC}/hbaromega$=0.33$%$, is more than one order of magnitude smaller than in previously studied BCS SCs, which we attribute to strong electron--phonon coupling and possible influence of phonon condensation in A15 SCs.
Deterministic oscillations of current-induced metastable resistivity in changing voltage have been detected in La$_{0.82}$Ca$_{0.18}$MnO$_3$ single crystals. At low temperatures, below the Curie point, application of specific bias procedures switches the crystal into metastable resistivity state characterized by appearance of pronounced reproducible and random structures in the voltage dependence of the differential conductivity. In certain bias range equally spaced broad conductivity peaks have been observed. The oscillating conductivity has been tentatively ascribed to resonances in a quantum well within the double tunnel barrier of intrinsic weak-links associated with twin-like defect boundaries.
96 - Y. Drees , Z. W. Li , A. Ricci 2015
The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magn etic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.
289 - L. Chen , T. T. Han , C. Cai 2020
Excitonic insulator (EI) is an intriguing insulating phase of matter, where electrons and holes are bonded into pairs, so called excitons, and form a phase-coherent state via Bose-Einstein Condensation (BEC). Its theoretical concept has been proposed several decades ago, but the followed research is very limited, due to the rare occurrence of EI in natural materials and the lack of manipulating method of excitonic condensation. In this paper, we report the realization of a doping-controlled EI-to-semi-metal transition in Ta$_2$NiSe$_5$ using $in$-$situ$ potassium deposition. Combining with angle-resolved photoemission spectroscopy (ARPES), we delineate the evolution of electronic structure through the EI transition with unprecedented precision. The results not only show that Ta$ _2 $NiSe$ _5 $ (TNS) is an EI originated from a semi-metal non-interacting band structure, but also resolve two sequential transitions, which could be attributed to the phase-decoherence and pair-breaking respectively. Our results unveil the Bardeen-Cooper-Schrieffer (BCS)-BEC crossover behavior of TNS and demonstrate that its band structure and excitonic binding energy can be tuned precisely via alkali-metal deposition. This paves a way for investigations of BCS-BEC crossover phenomena, which could provide insights into the many-body physics in condensed matters and other many-body systems.
The active control of matter by strong electromagnetic fields is of growing importance, with applications all across the optical spectrum from the extreme-ultraviolet to the far-infrared. In recent years, phase-stable terahertz (THz) fields have show n tremendous potential in the observation and manipulation of elementary excitations in complex systems. The combination of concepts from attosecond science with advanced THz technology facilitates novel spectroscopic schemes, such as THz streaking. In general, driving charges at lower frequency enhances interaction energies and can promote drastically different dynamics. For example, mid-infrared excitation induces field-driven sub-cycle electron dynamics in nanostructure nearfields. Such frequency scalings will also impact nanostructure-based streaking, which has been theoretically proposed. Here, we experimentally demonstrate extensive control over nanostructure photoelectron emission using single-cycle THz transients. The locally enhanced THz near-field at a nanotip significantly amplifies or suppresses the detected photocurrent. We present field-driven streaking spectroscopy with spectral compression and expansion arising from electron propagation within the nanolocalized volume. THz near-field streaking produces rich spectrotemporal features and will yield unprecedented control over ultrashort electron pulses for imaging and spectroscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا