ﻻ يوجد ملخص باللغة العربية
Beyond the Standard Model scenarios with extensions of the Higgs sector typically predict new resonances that can undergo a series of cascade decays to detectable Standard Model particles. On one hand, sensitivity to such signatures will contribute to the full reconstruction of the extended Higgs potential if a new physics discovery will be made. On the other hand, such cascade decays could be dominant decay channels, thus being potentially the best motivated signatures to achieve a new physics discovery in the first place. In this work, we show how the long short-term memory that is encoded in the cascade decays phenomenology can be exploited in discriminating the signal from the background, where no such information is present. In parallel, we demonstrate for theoretically motivated scenarios that such an approach provides improved sensitivity compared to more standard analyses, where only information about the signals final state kinematics is included.
Models with extended Higgs sectors can contain several additional Higgs states, heavier or lighter than the SM Higgs boson. The couplings of lighter extra states to SM particles can be strongly reduced, leading to small cross sections for their direc
$tau$ leptons emitted in cascade decays of supersymmetric particles are polarized. The polarization may be exploited to determine spin and mixing properties of the neutralinos and stau particles involved.
New colorless electroweak (EW) charged spin-1 particles with mass of a few TeV arise in numerous extensions of the Standard Model (SM). Decays of such a vector into a pair of SM particles, either fermions or EW bosons, are well studied. Many of these
We review scenarios in which the particles that account for the Dark Matter (DM) in the Universe interact only through their couplings with the Higgs sector of the theory, the so-called Higgs-portal models. In a first step, we use a general and model
The ATLAS and CMS collaborations of the LHC have observed that the Higgs boson decays into the bottom quark-antiquark pair, and have also established that the Higgs coupling with the top quark-antiquark pair is instrumental in one of the modes for Hi