ﻻ يوجد ملخص باللغة العربية
We establish the quantum fluctuations $Delta Q_B^2$ of the charge $Q_B$ accumulated at the boundary of an insulator as an integral tool to characterize phase transitions where a direct gap closes (and reopens), typically occurring for insulators with topological properties. The power of this characterization lies in its capability to treat different kinds of insulators on equal footing; being applicable to transitions between topological and non-topological band, Anderson, and Mott insulators alike. In the vicinity of the phase transition we find a universal scaling $Delta Q_B^2(E_g)$ as function of the gap size $E_g$ and determine its generic form in various dimensions. For prototypical phase transitions with a massive Dirac-like bulk spectrum we demonstrate a scaling with the inverse gap in one dimension and a logarithmic one in two dimensions.
We show that the onset of quantum chaos at infinite temperature in two many-body 1D lattice models, the perturbed spin-1/2 XXZ and Anderson models, is characterized by universal behavior. Specifically, we show that the onset of quantum chaos is marke
We present a worm-type Monte Carlo study of several typical models in the three-dimensional (3D) U(1) universality class, which include the classical 3D XY model in the directed flow representation and its Villain version, as well as the 2D quantum B
The nature of the behaviour of an isolated many-body quantum system periodically driven in time has been an open question since the beginning of quantum mechanics. After an initial transient, such a system is known to synchronize with the driving; in
We review recent progress in understanding nearly integrable models within the framework of generalized hydrodynamics (GHD). Integrable systems have infinitely many conserved quantities and stable quasiparticle excitations: when integrability is brok
We develop a general framework to compute the scaling of entanglement entropy in inhomogeneous one-dimensional quantum systems belonging to the Luttinger liquid universality class. While much insight has been gained in homogeneous systems by making u