ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitation strings and topological surgery in artificial spin ice

74   0   0.0 ( 0 )
 نشر من قبل Xiaoyu Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Systems of interacting nanomagnets known as artificial spin ices are models for exotic behavior due to their accessibility to geometries and measurement modalities that are not available in natural materials. Despite being fundamentally composed of binary moments, these systems often display collective phenomena associated with emergent higher-order frustration. We have studied the vertex-frustrated Santa Fe ice, examining its moment structure both after annealing near the ferromagnetic Curie point, and in a thermally dynamic state. We experimentally demonstrate the existence of a disordered string ground state, in which the magnetic structure can be understood through the topology of emergent strings of local excitations. We also show that the system can support a long-range-ordered ground state for certain ratios of local interactions. Both states are accessible via moment reversals only through topological surgery, i.e., the breaking of pairs of crossed strings and their reattachment in topologically inequivalent configurations. While we observe instances of topological surgery in our experimental data, such events are energetically suppressed, and we find that an apparent kinetic bottleneck associated with topological surgery precludes the system from achieving either ground state through local moment flips. Santa Fe ice thus represents an unusual instance of competition between topological complexity and ordering, suggesting analogous structures in the quantum realm.



قيم البحث

اقرأ أيضاً

3D nano-architectures present a new paradigm in modern condensed matter physics with numerous applications in photonics, biomedicine, and spintronics. They are promising for the realisation of 3D magnetic nano-networks for ultra-fast and low-energy d ata storage. Frustration in these systems can lead to magnetic charges or magnetic monopoles, which can function as mobile, binary information carriers. However, Dirac strings in 2D artificial spin ices bind magnetic charges, while 3D dipolar counterparts require cryogenic temperatures for their stability. Here, we present a micromagnetic study of a highly-frustrated 3D artificial spin ice harboring tension-free Dirac strings with unbound magnetic charges at room temperature. We use micromagnetic simulations to demonstrate that the mobility threshold for magnetic charges is by $SI{2}{eV}$ lower than their unbinding energy. By applying global magnetic fields, we steer magnetic charges in a given direction omitting unintended switchings. The introduced system paves a way towards 3D magnetic networks for data transport and storage
We report broadband spin-wave spectroscopy on kagome artificial spin ice (ASI) made of large arrays of interconnected Ni$_{80}$Fe$_{20}$ nanobars. Spectra taken in saturated and disordered states exhibit a series of resonances with characteristic mag netic field dependencies. Making use of micromagnetic simulations, we identify resonances that reflect the spin-solid-state and monopole-antimonopole pairs on Dirac strings. The latter resonances allow for the generation of highly-charged vertices in ASIs via microwave assisted switching. Our findings open further perspectives for fundamental studies on ASIs and their usage in reprogrammable magnonics.
Arrays of suitably patterned and arranged magnetic elements may display artificial spin-ice structures with topological defects in the magnetization, such as Dirac monopoles and Dirac strings. It is known that these defects strongly influence the qua si-static and equilibrium behavior of the spin-ice lattice. Here we study the eigenmode dynamics of such defects in a square lattice consisting of stadium-like thin film elements using micromagnetic simulations. We find that the topological defects display distinct signatures in the mode spectrum, providing a means to qualitatively and quantitatively analyze monopoles and strings which can be measured experimentally.
We investigate spin dynamics of artificial spin ice (ASI) where topological defects confine magnon modes in Ni$_{81}$Fe$_{19}$ nanomagnets arranged on an interconnected kagome lattice. Brillouin light scattering microscopy performed on magnetically d isordered states exhibit a series of magnon resonances which depend on topological defect configurations detected by magnetic force microscopy. Nanomagnets on a Dirac string and between a monopole-antimonopole pair show pronounced modifications in magnon frequencies both in experiments and simulations. Our work is key for the creation and annihilation of Dirac strings via microwave assisted switching and reprogrammable magnonics based on ASIs.
230 - R. Puttock , A. Manzin , V. Neu 2019
Here an artificial spin ice (ASI) lattice is introduced that exhibits unique Ising and non-Ising behavior under specific field switching protocols because of the inclusion of coupled nanomagnets into the unit cell. In the Ising regime, a magnetic swi tching mechanism that generates a uni- or bimodal distribution of states dependent on the alignment of the field is demonstrated with respect to the lattice unit cell. In addition, a method for generating a plethora of randomly distributed energy states across the lattice, consisting of Ising and Landau states, is investigated through magnetic force microscopy and micromagnetic modeling. We demonstrate that the dispersed energy distribution across the lattice is a result of the intrinsic design and can be finely tuned through control of the incident angle of a critical field. The present manuscript explores a complex frustrated environment beyond the 16-vertex Ising model for the development of novel logic-based technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا