ترغب بنشر مسار تعليمي؟ اضغط هنا

Terahertz spin dynamics driven by an optical spin-orbit torque

62   0   0.0 ( 0 )
 نشر من قبل Ritwik Mondal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin torques are at the heart of spin manipulations in spintronic devices. Here, we examine the existence of an optical spin-orbit torque, a relativistic spin torque originating from the spin-orbit coupling of an oscillating applied field with the spins. We compare the effect of the nonrelativistic Zeeman torque with the relativistic optical spin-orbit torque for ferromagnetic systems excited by a circularly polarised laser pulse. The latter torque depends on the helicity of the light and scales with the intensity, while being inversely proportional to the frequency. Our results show that the optical spin-orbit torque can provide a torque on the spins, which is quantitatively equivalent to the Zeeman torque. Moreover, temperature dependent calculations show that the effect of optical spin-orbit torque decreases with increasing temperature. However, the effect does not vanish in a ferromagnetic system, even above its Curie temperature.



قيم البحث

اقرأ أيضاً

Magnetic skyrmion is a promising building block for developing information storage and computing devices. It can be stabilized in a ferromagnetic thin film with the Dzyaloshinskii-Moriya interaction (DMI). The moving ferromagnetic skyrmion may show t he skyrmion Hall effect, that is, the skyrmion shows a transverse shift when it is driven by a spin current. Here, we numerically and theoretically study the current-driven dynamics of a ferromagnetic nanoscale skyrmion in the presence of the anisotropic DMI, where the skyrmion has an elliptical shape. The skyrmion Hall effect of the elliptical skyrmion is investigated. It is found that the skyrmion Hall angle can be controlled by tuning the profile of elliptical skyrmion. Our results reveal the relation between the skyrmion shape and the skyrmion Hall effect, which could be useful for building skyrmion-based spintronic devices with preferred skyrmion Hall angle. Also, our results provide a method for the minimization of skyrmion Hall angle for applications based on in-line motion of skyrmions.
Magnetic insulators, such as yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y$_3$Fe$_5$O$_{12}$/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y$_3$Fe$_5$O$_{12}$/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd$_3$Ga$_5$O$_{12 }$ substrates and lift-off. We observe field-like and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y$_3$Fe$_5$O$_{12}$/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. These heating effects are much more pronounced in the investigated nanostructures than in comparable micron-sized samples. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident: quantized spin-wave modes across the width of the wires are observed in the spectra. Our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.
Spin torque from spin current applied to a nanoscale region of a ferromagnet can act as negative magnetic damping and thereby excite self-oscillations of its magnetization. In contrast, spin torque uniformly applied to the magnetization of an extende d ferromagnetic film does not generate self-oscillatory magnetic dynamics but leads to reduction of the saturation magnetization. Here we report studies of the effect of spin torque on a system of intermediate dimensionality - a ferromagnetic nanowire. We observe coherent self-oscillations of magnetization in a ferromagnetic nanowire serving as the active region of a spin torque oscillator driven by spin orbit torques. Our work demonstrates that magnetization self-oscillations can be excited in a one-dimensional magnetic system and that dimensions of the active region of spin torque oscillators can be extended beyond the nanometer length scale.
Efficient manipulation of magnetization at ultrashort time scales is of particular interest for future technology. Here, we numerically investigate the influence of the so-called field-derivative torque, which was derived earlier based on relativisti c Dirac theory [Mondal et al., Phys. Rev. B 94, 144419 (2016)], on the spin dynamics triggered by ultrashort laser pulses. We find that only considering the THz Zeeman field can underestimate the spin excitation in antiferromagnetic oxide systems as, e.g., NiO and CoO. However, accounting for both, the THz Zeeman torque and the field-derivative torque, the amplitude of the spin excitation increases significantly. Studying the damping dependence of field-derivative torque we observe larger effects for materials having larger damping constants.
We study the generation of propagating spin waves in Ta/CoFeB waveguides by spin-orbit torque antennas and compare them to conventional inductive antennas. The spin-orbit torque was generated by a transverse microwave current across the magnetic wave guide. The detected spin wave signals for an in-plane magnetization across the waveguide (Damon-Eshbach configuration) exhibited the expected phase rotation and amplitude decay upon propagation when the current spreading was taken into account. Wavevectors up to about 6 rad/$mu$m could be excited by the spin-orbit torque antennas despite the current spreading, presumably due to the non-uniformity of the microwave current. The relative magnitude of generated anti-damping spin-Hall and Oersted fields was calculated within an analytic model and it was found that they contribute approximately equally to the total effective field generated by the spin-orbit torque antenna. Due to the ellipticity of the precession in the ultrathin waveguide and the different orientation of the anti-damping spin-Hall and Oersted fields, the torque was however still dominated by the Oersted field. The prospects for obtaining a pure spin-orbit torque response are discussed, as are the energy efficiency and the scaling properties of spin-orbit torque antennas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا